


Icinga Network Monitoring

Monitor complex and large environments across 
dispersed locations with Icinga

Viranch Mehta

BIRMINGHAM - MUMBAI



Icinga Network Monitoring

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either expressed or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1141113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-229-6

www.packtpub.com

Cover Image by Prashant Timappa Shetty (sparkling.spectrum.123@gmail.com)



Credits

Author
Viranch Mehta

Reviewers
Toni de la Fuente (Blyx)

Naoya Hashimoto

Michael Medin

Daniel Oetken

Acquisition Editor
Vinay Argekar

Lead Technical Editor
Amit Ghodake

Technical Editors
Sharvari H. Baet

Kanhucharan Panda

Copy Editors
Alisha Aranha

Roshni Banerjee

Lavina Pereira

Project Coordinator
Amigya Khurana

Proofreader
Bob Phillips

Indexer
Tejal R. Soni

Graphics
Yuvraj Mannari

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque



About the Author

Viranch Mehta is fresh out of college, with experience of one year at Directi 
Internet Solutions (www.directi.com) as a Developer in Operations. He has done his 
B.Tech. (ICT) from Dhirubhai Ambani Institute of Information and Communication 
Technology (www.daiict.ac.in), Gandhinagar (Gujarat). He has been a student 
Developer for Google Summer of Code (www.google-melange.com) in 2011 and 2012 
with the KDE (www.kde.org) project in college, and a mentor in 2013.

The author has been a Linux and system administration enthusiast since his college 
days. He has built a lot of Homebrew automation programs using bash/python 
scripting as daily tasks in college. He started developing extensively with the KDE 
project, working primarily with the Plasma subproject, and later with the KDE 
Games subproject. He has also worked on Qt (qt-project.org) applications and 
writes small-scale software using Qt.

Apart from the work/hobby projects in college, the author has spent a large amount 
of time as a professional, building and deploying tools for monitoring and alert 
management. Directi, being an Internet solutions (such as domain name registration, 
Windows/Linux hosting, contextual advertising, and so on) provider, has a  
large-scale server and network infrastructure. He has also briefly contributed  
to Icinga with a few bug fixes.

I would like to thank my fiancé Chandni for being patient with me 
while I spent nights working on the book and being at work in the 
daytime. I would also like to thank my parents for motivating me to 
write this book and friends and colleagues for helping me with some 
ideas for the book. Finally, I would like to thank Packt Publishing 
for giving me an opportunity to work on the book and making it 
available to a large audience.



About the Reviewers

Toni de la Fuente (Blyx) is a Senior Solutions Engineer for Americas at Alfresco 
Software Inc. The highlight of his career is the more-than-14 years' experience he 
has in Systems Administration and Networking and Security. He also teaches LPI 
Linux certification, Red Hat Certified Engineer (RHCE), and ITIL v3; recently, he was 
certified as an AWS Technical Professional and AWS Business Professional.

He was declared an Open Source enthusiast, having founded different open source 
projects in the last few years. He has participated in other open source-related projects, 
such as Madrid Wireless, Fedora Linux, or OpenSolaris Hispano, and been referenced 
in books on network security. He regularly takes lectures, courses, and conferences 
at different events in Europe, the United States, and Latin America. He has also 
contributed to the world of Open Source for more than 10 years with his blog  
http://blyx.com and through Twitter (@ToniBlyx).

Toni wants to thank Packt Publishing for their trust in him and to all 
the people who spend tons of hours working at night making Open 
Source—you all make this world a better place, keep going.



Naoya Hashimoto has been working on Linux system integration and system 
and operation maintenance, both on-premise and on a public cloud for years. He has 
also started developing a new service to manage, maintain, and monitor a system 
on public cloud along with his experience in working as an infrastructure engineer 
in Japan for the past few years. He has worked on books such as OSS DB Standard 
Text – PostgreSQL (http://www.oss-db.jp/ossdbtext/text.shtml) and was also 
involved in the translation of some chapters from Japanese to English.

Thanks to Vineeta Darade and Amigya Khurana for giving me the 
opportunity to review Icinga Network Monitoring, because it is my 
first time reviewing technical books on IT and, of course, Icinga, 
too. I would never have had an experience like this without using 
and writing about Icinga. Lastly, I'd like to express my gratitude 
to Forschooner Inc, as they gave me the opportunity to publish 
a company blog about OSS system integration and maintenance, 
mainly in Japanese but also in English.

Michael Medin is a Senior Developer and Lead Architect of the NSClient++ 
agent. He is an avid Open Source and monitoring fan and has been involved in 
open source monitoring for over 10 years. In Michael's day-to-day job, when he is 
not complaining about the lack of monitoring, he works as an Architect with Oracle 
Fusion Middleware. His blog, on which he often writes about monitoring, can be 
found at http://blog.medin.name.

Michael would like to thank Xiqun for allowing him to spend 
countless hours working with NSClient++ and his daughters for 
always bringing a smile to his face.

Daniel Oetken, born near Hamburg, Germany in 1990, started using Linux in 
2007. He spent 10 months in Vancouver, Canada and is now working as a Junior 
Server Administrator. He is working mostly with Debian web and database servers, 
and is responsible for the administration of a Splunk Enterprise Cluster.



www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,  
sign up for a range of free newsletters and receive exclusive discounts and offers  
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt's online  
digital book library. Here, you can access, read and search across Packt's entire 
library of books. 

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/




Table of Contents
Preface 1
Chapter 1: Installation and Configuration 5

An overview 5
What to expect? 6
Requirements 6
Download 7
Installation 7

Building an RPM for Red Hat / Centos 7
Using DEB for Ubuntu 9
Compiling from the source 9

Make it work 10
An overview of configuration options 13
Summary 14

Chapter 2: Icinga Object Configuration 15
Objects 15
A localhost monitoring setup 17
Templates 20
Notifications 22
Summary 25

Chapter 3: Running Remote Checks on Systems 27
Active checks 28

Public services 28
Private services 30

Secure Shell (SSH) 30
Nagios Remote Plugin Executor (NRPE) 31
NSClient++ 32
Simple Network Management Protocol (SNMP) 33



Table of Contents

[ ii ]

Passive checks 34
Summary 37

Chapter 4: Monitoring Infrastructure, Network Services,  
and System Health 39

Linux servers 40
The Secure Shell (SSH) check 41
The load check 42
The disk check 43

Windows servers 43
The Nagios Remote Plugin Executor (NRPE) check 44
The CPU check 45
The memory check 46
The disk check 46

Network devices 48
The packet loss and RTA check 49
The SNMP status 50
The network port check 50

Parent-child relationships and service dependencies 51
Relationships between the hosts 51
Service relationships 54

Summary 59
Chapter 5: Host and Service Availability Reporting 61

Default configuration 62
Customizing notification behavior 66

Service definitions 67
Contact definitions 69
The host/service escalation 69

Summary 73
Chapter 6: Icinga Plugins 75

Writing custom plugins 76
Integrating custom plugins 78
Threshold and range standards 79
Summary 80

Web Interfaces 81
Icinga Classic 81

Authentication 82
The Status view 82
A tactical overview 84



Table of Contents

[ iii ]

The host/service detail 85
The Hostgroup/Servicegroup Overview/Summary status 85
The status map 86
The All Problems view 86
Other views 87

Icinga Web 87
Requirements 87
Installation 88
Configuration 89

IDOUtils 89
Icinga Web 89

Screenshots 90
Thruk 94

Installation and configuration 94
Summary 97

Index 99





Preface
This book will show the readers how to setup an automated monitoring system 
 for small to large-scale network and server infrastructure with Icinga that alerts 
them whenever something goes wrong in their network or the servers on the 
network. This book takes us through the installation, configuration, best practices, 
and deployment steps for Icinga, which is well configured to alert us with the most 
relevant and precise information whenever problems occur.

What this book covers
Chapter 1, Installation and Configuration, shows the dependency installation/
configuration, followed by installation of Icinga (and its components) and the 
minimum configuration changes required to get the default Icinga installation  
up and running.

Chapter 2, Icinga Object Configuration, explains the default configuration files  
installed by the Icinga installation, and how the configuration objects bring  
together the localhost monitoring setup.

Chapter 3, Running Remote Checks on Systems, explains how to extend the  
existing understanding of the Icinga localhost monitoring configuration to  
monitor remote servers and network, including active/passive checks and  
NRPE/NSClient/SNMP.

Chapter 4, Monitoring Infrastructure, Network Services, and System Health,  
introduces the most common system health checks for Linux/Windows  
serves and network devices; and covers host-parent relationships and  
service dependencies.

Chapter 5, Host and Service Availability Reporting, covers notification configuration  
for host and service availability; explains the configuration directives related to 
specify to whom, when, and how Icinga should send notifications.



Preface

[ 2 ]

Chapter 6, Icinga Plugins, explains how to write the plugins (conventions with input, 
format of the output, exit code and so on) and integrate/use them with Icinga.

Chapter 7, Web Interfaces, introduces various web interfaces available for Icinga,  
and covers working with them and getting the most information out of them.

What you need for this book
To run the examples in the book, the following software will be required:

• Linux server:
 ° CentOS 6.x (http://www.centos.org/)

• Icinga (installation covered in the book):
 ° Icinga (latest version, http://www.icinga.org/)

• Miscellaneous tools:
 ° Email (SMTP) relay server (postfix/sendmail, postfix preferred, 

http://postfix.org/)
 ° Apache web (HTTP) server (http://apache.org/)

Who this book is for
This book is for all the system administrators or Linux enthusiasts who are looking for 
a flexible tool to monitor some kind of network infrastructure efficiently, or trying to 
understand the Icinga software. Readers are expected to have familiarity with Linux 
basics such as (package management, running a web server, and so on), and the Linux 
command line.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can include other contexts through the use of the include directive."



Preface

[ 3 ]

A block of code is set as follows:

define <object-type> {
  key1    value1
  key2    value2
  ...
}

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

define contactgroup {
    contactgroup_name       admins
    alias                   Icinga Administrators
    members              icingaadmin
}

Any command-line input or output is written as follows:

$ cp icinga.spec ~/rpmbuild/SPECS

$ cp icinga-*.tar.gz ~/rpmbuild/SOURCES

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "clicking 
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.



Preface

[ 4 ]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all  
media. At Packt, we take the protection of our copyright and licenses very  
seriously. If you come across any illegal copies of our works, in any form,  
on the Internet, please provide us with the location address or website name 
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com


Installation and Configuration
Icinga is a scalable open source monitoring system that keeps a close watch on our 
network and server infrastructure, alerts us of problems and resolutions, and gives 
uptime reports. Icinga is a fork of the popular Nagios project, which aims to build 
many necessary features on top of it. Icinga is backward compatible with Nagios,  
so all of the Nagios configuration and plugins can be reused with Icinga as is.

This chapter covers a brief overview of the Icinga architecture and a basic setup to 
quickly start monitoring a localhost. We will look into the Icinga installation and 
gain some insight into the initial configuration, so as to get a basic deployment up 
and running. At the end of this chapter, we will have a web interface showing the 
status of various services on a localhost and also through an e-mail alert if one of the 
services goes down.

An overview
Icinga consists of various components. The Icinga Core handles scheduling of checks 
and processing their results. Service states are determined by the Core, by either 
running checks periodically (active checks) or checking the results that are being 
reported by a remote system (passive checks). Depending on the checks results, 
the service state is determined, and depending on the notification configuration, 
notifications are sent if there is a change in the service state.

The Core is not aware of the checks being executed, nor the notification method  
that is being used. It simply forks the processes to execute the check plugins,  
and also performs the processing of exit codes. The notification methods are defined 
by commands that invoke the underlying operating system provided commands 
(such as sendmail), or scripts that use notification services to actually deliver SMS, 
IMs, and so on; this means that Icinga is not aware of the particular notification 
methods either, it is only aware of the command/script to invoke or sending  
the notification.



Installation and Configuration

[ 6 ]

The Core also provides all sorts of information (downtimes, check results, alert history, 
command execution logs, and so on) via logfiles, which can be used to generate reports 
on a web interface, for instance. Custom scripts and add-ons can use this logfile to read 
the current state, and data can show this information in various ways, which is useful 
for analysis, writing add-ons, and so on.

The data revealed by Icinga can be used to build various web interfaces to  
present monitoring state, and to do various actions from the web interface  
(schedule downtime, add comments, disable checks, and so on). There are  
already a few web interfaces available (Icinga Classic, Thruk, and so on)  
that can be plugged into Icinga and used.

There are many add-ons available online that extends Icinga's functionality  
to suit specific needs. Some available add-ons include NagVis (visualizing 
monitoring status), PNP4Nagios (graphing), and NConf and NagiosQL  
(managing configuration from web interface) . You can find a number of  
add-ons by visiting http://www.monitoringexchange.org/.

Icinga's configuration is stored in regular text files along with configuration objects  
in a simple-to-understand format. Each target server, checks to run on them, and so 
on are configuration objects that are related to each other as desired.

What to expect?
It is good to keep the outcome of the installation process in mind before beginning 
to have an overall idea of where we are headed, and what things will look like when 
we are done. We should expect the following at the end this chapter:

• Icinga installed with default configuration to monitor itself
• Icinga has started to monitor the localhost with most common  

checks (load, disk, number of logged-in users, HTTP, ping, SSH,  
swap, number of processes, and so on)

• Icinga web UI showing us the status of above checks
• E-mail notifications when a check fails

Requirements
If you are building Icinga from the source, you should have the GCC compiler  
and some libraries; Icinga will prompt for these during compilation if they are  
not found. Apart from that, you would need to have a functioning web server  
for the web interface.



Chapter 1

[ 7 ]

We will need the following before we can start with the installation:

• GCC compiler
• Apache web server
• Nagios plugins (nagios-plugins package for most distributions)
• SMTP relay server (for example, Postfix) with proper configuration  

so that mail/mailx commands work

After we have these, we can move on to the download and installation steps.

Download
There are various sources and types of Icinga installers. You can get  
distribution-specific packages, like DEBs for Debian/Ubuntu, RPMs for  
Red Hat/CentOS, and so on. You can also get the source code and build  
packages yourself, or directly compile and install it. The source tarball can  
be downloaded from Icinga's official website from its Downloads section.

Installation
The recommended way of installing Icinga is by distribution packages.  
Debian (Squeeze/Wheezy) and Ubuntu already have upstream packages  
available on Launchpad, but the latest stable version may be old (Icinga is  
still relatively under development, so the latest version is preferred since  
it will have a lot of bug fixes). Red Hat/CentOS have Icinga packages  
located in the RepoForge YUM repository (http://repoforge.org/).  
It may still be useful to build an RPM for yourself, for using backported  
bug fixes without having to wait for the next release. Icinga's default  
source tarball already has the SPEC file for RPM creation.

Building an RPM for Red Hat / Centos
This is optional and should be done only if you want to build your own  
RPM. Otherwise, use the RepoForge repository mentioned previously and  
skip this section.

Icinga's source tarball has the SPEC file for building RPMs. The procedure to  
build RPMs remains as usual. Create a non-root user account, and log in with  
that user to build the RPMs. Do not do this as the root user.

Download the Icinga source tarball and extract it. Install RPM Development  
Tools using the following command:
$ sudo yum install rpmdevtools



Installation and Configuration

[ 8 ]

You can also install it using the following command:

$ sudo yum install @development-tools fedora-packager

Now, set up the build folder:

$ rpmdev-setuptree

$ ls ~/rpmbuild

BUILD  RPMS  SOURCES  SPECS  SRPMS

Now, copy the SPEC file from the extracted source to SPECS and the source tarball  
to SOURCES:

$ cp icinga.spec ~/rpmbuild/SPECS

$ cp icinga-*.tar.gz ~/rpmbuild/SOURCES

Build the final RPM packages using the following commands:

$ cd ~/rpmbuild

$ rpmbuild -bb SPECS/icinga.spec

The preceding command might give some dependency errors. Install the  
listed packages with yum, and run the last rpmbuild command again.  
If all the dependencies are fixed, the compilation should start, which usually  
takes some time to complete. The RPM package will be created inside the 
RPMS/$arch folder, where $arch is the server's architecture (i386/x86_64).

$ ls ~/rpmbuild/RPMS/x86_64

icinga-1.9.1-1.el6.x86_64.rpm

icinga-idoutils-1.9.1-1.el6.x86_64.rpm

icinga-devel-1.9.1-1.el6.x86_64.rpm

icinga-idoutils-libdbi-mysql-1.9.1-1.el6.x86_64.rpm

icinga-doc-1.9.1-1.el6.x86_64.rpm

icinga-idoutils-libdbi-pgsql-1.9.1-1.el6.x86_64.rpm

icinga-gui-1.9.1-1.el6.x86_64.rpm

The icinga package is the Icinga Core; icinga-doc provides the Icinga offline 
documentation; icinga-gui provides the Icinga web interface; and icinga-
idoutils-* provides an optional component to store Icinga information in a 
database. Now, install the icinga, icinga-doc, and icinga-gui built RPMs:

$ cd ~/rpmbuild/RPMS/x86_64/

$ sudo rpm –ivh {icinga,icinga-doc,icinga-gui}-*.rpm



Chapter 1

[ 9 ]

The installation should succeed. Now install the Apache and Nagios plugins.  
The nagios-plugins package provides checking of all the basic check plugins  
that are commonly used for monitoring:

$ sudo yum install httpd nagios-plugins

Also, install SMTP relay server (Postfix is used in the next example) and use the  
mail command for sending e-mail alerts:

$ sudo yum install postfix mailx

Using DEB for Ubuntu
Debian packages for Ubuntu are available at https://launchpad.net/
ubuntu/+source/icinga, which can be used to install Icinga on an  
Ubuntu Server.

$ sudo apt-get install icinga icinga-doc

This command should install the Icinga package which is ready for use. Install the 
Apache and Nagios plugins:

$ sudo apt-get install apache2 nagios-plugins

Also use the postfix and mail commands:

$ sudo apt-get install postfix bsd-mailx

This setup is good enough for now. Let's continue with the next section.

Compiling from the source
Let us see how to compile Icinga from the source using the following steps:

1. Download the Icinga source tarball and extract it:
$ tar zxvf icinga-1.9.1.tar.gz

$ cd icinga-1.9.1

2. Run the configure script:
$ ./configure --prefix=/usr --disable-idoutils

IDOUtils is an optional module that comes with Icinga but we don't want to 
use it, so we use the configure script to disable the module compilation.

3. Compile the source code:
$ make all



Installation and Configuration

[ 10 ]

4. This will take some time. After it is done, it's time to install!

$ sudo make fullinstall

$ sudo make install-config

Icinga is now installed and (almost) ready for use.

We need to create a user named icinga because the Icinga server will run as  
this user:

$ useradd –m icinga

$ passwd icinga

Since the web server will be run as the apache user (in most cases, this is by default, 
and is not changed unless required by other applications using Apache), we need to 
add this user to the icinga group.

$ usermod –a icinga apache

The default web server user may be different for different distributions (for example, 
www, and so on).

Make it work
As mentioned in the Requirements section, make sure you have a proper SMTP relay 
server (such as Postfix) setup so that the usual mail/mailx commands can work. 
Verify this by sending yourself a test e-mail with the following command on the 
server (make sure you replace your@email.com with your own e-mail address):

$ echo "This is a test email" | /bin/mail –s "Test email"  
  your@email.com

Proceed further if it works and you receive an e-mail. Troubleshoot your SMTP 
server if the preceding command gives an error, or you don't receive an e-mail.  
Open /etc/icinga/objects/contacts.cfg, and replace icinga@localhost  
with your own e-mail address in following line:

email                           your@email.com

By default, notifications are disabled, so we need to enable them first.  
Open /etc/icinga/objects/localhost.cfg, and comment all  
occurrences of the following line:

notifications_enabled           0



Chapter 1

[ 11 ]

The configuration files can be commented with a hash (#) or a semicolon (;):

# notification_enabled            0

After the installation step, we now have Icinga Core, the web UI, and the  
Nagios plugins in place. The configuration to monitor your localhost for  
common services such as ping check, system load, and disk space is already  
in place. Now, start the icinga service, and (re)start the apache web server  
to begin the monitoring and see what's happening in the web interface.  
This can be done using the following commands.

• For RedHat/CentOS/Fedora:
$ service icinga start

$ service httpd start

• For Ubuntu/Debian:

$ /etc/init.d/icinga start

$ /etc/init.d/apache2 start

Make sure that there were no errors reported for the preceding commands.  
You can now access the web interface at http://localhost/icinga.  
The default authentication credentials are username: icingaadmin and  
password: icingaadmin.

If you get a connection refused error, make sure that Apache was 
started properly. Also check if you have proper firewall settings  
in place to allow connections to the web server. This should not  
be a problem if you are already using the Apache server for  
other purposes.
The web server may give constant "Internal Server Errors", due to  
some distributions shipping with SELinux which is enabled by 
default. We need to disable it to have the web functioning properly.
$ setenforce 0

You can change the default password for the icingaadmin user to something of  
your choice with following command:

$ htpasswd /etc/icinga/passwd icingaadmin

This command will prompt for a new password to be set, type in the password and 
press Enter, this will save your password. Simply reload the web page, and it will  
ask for the new password.



Installation and Configuration

[ 12 ]

You should have an interface similar to the following screenshot:

Icinga Web

Go to the Service Detail link on the left sidebar to see all the hosts (localhost only 
for now) and the services being monitored. It may take a few minutes for Icinga to 
schedule and complete the checking of all the services; after which, all of them will 
go green (given that they all pass, of course).

The next critical part is alerting. Note that we have a HTTP check for localhost 
(visible on the web interface). You can try to stop the web server and see if you  
get an e-mail notification. Note that it may take five to ten minutes before you  
get an e-mail alert. Icinga makes sure that the service is really down, by checking 
multiple times, before it sends out alerts. Also note that when we stop the web 
server, the web interface will remain inaccessible for that duration.

At this point, we're done with setting up a very basic monitoring server. The last 
section before we summarize the chapter provides some insight into the basic 
configuration options of Icinga, which typically applies to how Icinga operates  
rather than to what it monitors.



Chapter 1

[ 13 ]

An overview of configuration options
Configuration is central to customizing Icinga to fit your needs. It becomes possible 
to highly customize Icinga since the configuration is completely text-based. There is  
no out of the box configuration that you can install, and automatically start 
discovering servers on your infrastructure and monitoring them. You need to 
carefully add all such configurations for Icinga to monitor your network efficiently. 
This topic gives you a brief overview on the Icinga configuration.

The Icinga configuration is split into two main types: resource files and object 
files, both of which are specified in the main configuration file along with other 
Icinga-wide options. This main file contains directives that determine how Icinga 
operates. The resource file contains Icinga macros that are user defined, such as 
paths to custom plugins, passwords, and so on. The object files contain Icinga object 
definitions, each object corresponding to a host, service, and so on. Icinga has  
object types (host, service, command, and so on) with parameters to build the 
monitoring configuration.

All of the configuration files are located inside the /etc/icinga folder. The commonly 
used main configuration file is named as icinga.cfg, the resource file is resources.
cfg (it can be used more than once and is specified in the main configuration file). 
Object files are under the /etc/icinga/objects folder, which contains object 
definitions that specify monitoring targets. The names of the object files can be 
anything, with the content being object definitions, which we will look into later. 
Following is what the configuration structure looks like:

$ tree /etc/icinga

/etc/icinga

├── cgiauth.cfg

├── cgi.cfg

├── conf.d

├── icinga.cfg

├── modules

├── objects

│ ├── commands.cfg

│ ├── contacts.cfg

│ ├── localhost.cfg

│ ├── notifications.cfg

│ ├── printer.cfg

│ ├── switch.cfg

│ ├── templates.cfg



Installation and Configuration

[ 14 ]

│ ├── timeperiods.cfg

│ └── windows.cfg

├── passwd

└── resource.cfg

We will look at what each configuration file refers to in the subsequent chapters.  
You can look up the Icinga documentation at http://docs.icinga.org/latest/
en/configmain.html for the main configuration file, to see the list of options that 
are available to customize.

Summary
In this chapter, we looked into the basic overview of Icinga's monitoring architecture, 
installation, and running Icinga's server and web interface. We also looked into the 
overview of various aspects of configurations that exist in Icinga. Play around with 
the web interface and the configuration files to get comfortable with Icinga.

In the next chapter, we will go through and understand how the current 
configuration to monitor the localhost that is in place works.



Icinga Object Configuration
Objects are central to the Icinga configuration in terms of what will be monitored. 
We tell Icinga what servers and what services on each of these servers should be 
monitored, as well as the contact information and modes of alerting. All of these  
are primarily defined by Icinga objects.

It is very important to understand the objects and how to use them to build a  
proper monitoring configuration. This configuration is what we need to describe  
and configure our monitoring environment.

Objects
There are many types of objects, some of which include the following:

• Host, Hostgroup, Hostdependency, Hostescalation, Hostextinfo
• Service, Servicegroup, Servicedependency, Serviceescalation, Serviceextinfo
• Contact, Contactgroup
• Command
• Timeperiod

An object definition contains the object type and valid key-value pairs required to 
describe the particular object instance. The format of the object definition is as shown 
in the following code:

define <object-type> {
  key1    value1
  key2    value2
  ...
}



Icinga Object Configuration

[ 16 ]

An example of object definition is as follows:

define host {
  hostname    www.google.com
  alias       google-server 
}

Objects are defined in plain text files in a certain format. One file can contain one 
or more object definitions, and there can be any number of object configuration 
files with the extension .cfg, which are specified by the cfg_file and/or cfg_dir 
directives in the main configuration file.

The configuration of the basic monitoring setup involves the use of host, service,  
and command objects. We follow the step-by-step process to reach a final 
configuration which is as follows:

• We define servers that we want to monitor with host objects. The host objects 
take hostname, address, and so on, using which we specify the server's details.

• Then we define the services that will be monitored on each of the servers 
using service objects. The service objects take service name, hostname,  
check command, and so on to specify the server on which you want to  
run this service check, and the command name that specifies the command 
that will perform the check.

• The check command specified in the service definition corresponds  
to a command object. The command objects have a command name  
with the command-line string, which is specified to determine the  
exact command that should be run (as on the bash console) to execute  
the check. The criticality/state of the service check is determined by  
the exit code of the command: 0 is for OK, 1 is for WARNING, and 2  
is for CRITICAL. All other exit codes result in the UNKNOWN state.

There are other object types available for easy configuration of complex networks.  
For example, suppose we want to run a check for free disk space on all of the servers, 
and we don't want to specify all of them in the service definition. Instead, we can create 
a hostgroup (basically a group of several hosts) object with a name, say allservers. 
We can then specify this hostgroup name in all host definitions using the hostgroup 
directive, and give the same hostgroup name in the service definition using the 
hostgroup_name directive. Icinga will put the service check on all hosts that belong to 
the allservers hostgroup. Even better, we can create a host object template (same as a 
usual host definition) using Icinga's object inheritance, in which we specify the desired 
hostgroup name and then simply inherit the template object in all host definitions 
using the use directive.



Chapter 2

[ 17 ]

A localhost monitoring setup
Let us take a close look at our current setup, which we created in the first chapter,  
for monitoring a localhost. Icinga by default comes with object configuration for  
a localhost. The object configuration files are inside /etc/icinga/objects for 
default installations.

$ ls /etc/icinga/objects

commands.cfg   notifications.cfg  templates.cfg

contacts.cfg   printer.cfg        timeperiods.cfg

localhost.cfg  switch.cfg         windows.cfg

There are several configuration files with object definitions. Together, these object 
definitions define the monitoring setup for monitoring some services on a localhost.

Let's first look at localhost.cfg, which has most of the relevant configuration.  
We have a host definition:

define host{
  use          linux-server
  host_name    localhost
  alias        localhost
  address      127.0.0.1
}

The preceding object block defines one object, that is, the host that we want to 
monitor, with details such as the hostname, alias for the host, and the address of the 
server—which is optional, but is useful when you don't have DNS record for the 
hostname. We have a localhost host object defined in Icinga with the preceding 
object configuration.

The localhost.cfg file also has a hostgroup defined which is as follows:

define hostgroup {
  hostgroup_name  linux-servers
  alias           Linux Servers
  members         localhost     // host_name of the host object
}



Icinga Object Configuration

[ 18 ]

The preceding object defines a hostgroup with only one member, localhost,  
which we will extend later to include more hosts. The members directive specifies 
the host members of the hostgroup. The value of this directive refers to the value 
of the host_name directive in the host definitions. It can be a comma-separated list 
of several hostnames. There is also a directive called hostgroups in the host object, 
where you can give a comma-separated list of names of the hostgroups that we  
want the host to be part of. For example, in this case, we could have omitted the 
members directive in the hostgroup definition and specified a hostgroups directive, 
which has the value linux-servers, in the localhost host definition.

At this point, we have a localhost host and a linux-servers hostgroup,  
and localhost is a member of linux-servers. This is illustrated in the  
following figure:

members

hostgroup

linux-servers

host

localhost

Going further into localhost.cfg, we have a bunch of service object definitions that 
follow. Each of these definitions indicate the service on a localhost that we want to 
monitor with the host_name directive.

define service {
  use                    local-service
  host_name              localhost
  service_description    PING
  check_command          check_ping!100.0,20%!500.0,60%
}

This is one of the service definitions. The object defines a PING service check that 
monitors the reachability. The host_name directive specifies the host that this service 
check should be associated with, which in this case is localhost. Again, the value 
of the host_name directive here should reflect the value of the host_name directive 
defined in the host object definition. So, we have a PING service check defined for a 
localhost, which is illustrated by following figure:

members

hostgroup

linux-servers

host

localhost
host_name

service

Ping



Chapter 2

[ 19 ]

There are several such service definitions that are placed on a localhost. Each service 
has a check_command directive that specifies the command for monitoring that service.

Note that the exclamation marks in the check_command values are the 
command argument separators. So, cmd!foo!bar indicates that the 
command is cmd with foo as its first argument and bar as the second.

It is important to remember that the check_ping part in check_command in the 
preceding example does not mean the check_ping executable that is in /usr/lib64/
nagios/plugins/check_ping for most installations; it refers to the Icinga object of 
type command. In our setup, all command object definitions are inside commands.cfg.

The commands.cfg file has the command object definition for check_ping.

define command {
  command_name    check_ping
  command_line    $USER1$/check_ping -H $HOSTADDRESS$ -w $ARG1$ -c  
  $ARG2$ -p 5
}

The check_command value in the PING service definition refers to the preceding 
command object, which indicates the exact command to be executed for performing 
the service check. $USER1$ is a user-defined Icinga macro. Macros in Icinga are like 
variables that can be used in various object definitions to wrap data inside these 
variables. Some macros are predefined, while some are user defined. These user 
macros are usually defined in /etc/icinga/resources.cfg:

$USER1$=/usr/lib64/nagios/plugins

So replace the $USER1$ macro with its value, and execute:

$ value/of/USER1/check_ping --help

This command will print the usual usage string with all the command-line options 
available. $ARG1$ and $ARG2$ in the command definition are macros referring to the 
arguments passed in the check_command value in the service definition, which are 
100.0,20% and 500.0,60% respectively for the PING service definition. We will come 
to this later. As noted earlier, the status of the service is determined by the exit code of 
the command that is specified in the command_line directive in command definition.



Icinga Object Configuration

[ 20 ]

We have many such service definitions for a localhost in localhost.cfg, such as 
Root Partition (monitors disk space), Total Processes, Current Load, HTTP, 
along with command definitions in commands.cfg for check_commands of each of 
these service definitions.

So, we have a host definition for localhost, a hostgroup definition linux-servers 
having localhost as its member, several service check definitions for localhost 
with check commands, and the command definitions specifying the exact command 
with arguments to execute for the checks. This is illustrated with the example Ping 
check in the following figure:

members

hostgroup

linux-servers

host

localhost
host_name

check_command

service

Ping

check_ping

This completes the basic understanding of how our localhost monitoring is built up 
from plain-text configuration.

Templates
As you might have noticed, the host and the service object definitions have a use 
directive. Icinga's objects have the ability to inherit other objects. This use directive  
is nothing but the inheritance specifier. The value of this directive is another object  
of the same type, whose key-value pairs also are applied to the said object, 
overriding those which are re-defined. Such inherited objects are called template 
objects, or simply templates.

In our setup, the localhost host definition inherits the linux-server template object 
using the use directive. Template objects are usually defined in templates.cfg.



Chapter 2

[ 21 ]

Remember that there is no specification of filenames inside /etc/
icinga/objects or the number of objects to be defined in each file. 
The only specification is that the extensions of the files should be .cfg.

define host{
  name                    linux-server
  use                     generic-host
  check_period            24x7
  check_interval          5
  retry_interval          1
  max_check_attempts      10
  check_command           check-host-alive
  notification_period     workhours
  notification_interval   120
  notification_options    d,u,r
  contact_groups          admins
  register                0
}

The preceding code is just another host object definition of linux-server, which is 
inherited by the localhost host definition. We indicate that this is not a real host by 
setting the value of the register directive to 0. This template object defines the most 
common directives that most of the host definitions are going to need. This reduces 
a lot of effort as we are no longer required to redefine all of these directives in all of 
the host definitions, we can just use the template. Note that this template in turn uses 
a template generic-host which has more general directives defined. It is defined in 
the same file.

Each host definition also has a check_command directive specified, which is used 
to monitor the state of the host itself, apart from all the service checks configured 
for it. It is the same as the check_command directive in service definitions. It refers 
to a command object which has the defined command_line. The commands.cfg file 
also has the command definition for check-host-alive, which is used here in the 
previous template.

Similarly, the service object definitions have a template service local-service that 
they're inheriting. This template service too is defined in templates.cfg.



Icinga Object Configuration

[ 22 ]

Notifications
We would, as is the point of having monitoring systems, like to get alerted when 
something actually goes down. We don't want to keep monitoring the Icinga web 
interface screen, waiting for something to go down. Icinga provides a very generic 
and flexible way of sending out alerts. We can have any alerting script triggered 
when something goes wrong, which in turn may run commands for sending e-mails, 
SMS, Jabber messages, Twitter tweets, or practically anything that can be done 
from within a script. The default localhost monitoring setup has an e-mail alerting 
configuration, which we used in the first chapter.

The way these notifications work is that we define contact objects where we give  
the contact name, e-mail addresses, pager numbers, and other necessary details. 
These contact names are specified in the host/service templates or the objects 
themselves. So, when Icinga detects that a host/service has gone down, it will  
use this contact object to send contact details to the alerting script. The contact 
object definition also has the host_notification_commands and service_
notification_commands directives. These directives specify the command objects 
that should be used to send out the notifications for that particular contact. The 
former directive is used when the host goes down, and the latter is used when a 
service goes down. The respective command objects are then looked up and the 
value of their command_line directive is executed. This command object is the same 
as the one we looked at previously for executing checks. The same command object 
type is used to also define notification commands.

We can also define contact groups and specify them in the 
host/service object definitions to alert a bunch of contacts at 
the same time. We can also give a comma-separated list of 
contact names instead of a contact group.

Let's have a look at our current setup for notification configuration. The host/service 
template objects have the admin contact group specified, whose definition is in 
contacts.cfg:

define contactgroup {
  contactgroup_name    admins
  alias                Icinga Administrators
  members              icingaadmin
}



Chapter 2

[ 23 ]

The group has the icingaadmin member contact, which is again defined in  
the same file:

define contact {
  contact_name    icingaadmin
  use             generic-contact
  alias           Icinga Admin
  email           your@email.com
}

The contacts.cfg file has your e-mail address. The contact object inherits  
the generic-contact template contact object.

define contact{
  name                            generic-contact
  service_notification_period     24x7
  host_notification_period        24x7
  service_notification_options    w,u,c,r,f,s
  host_notification_options       d,u,r,f,s
  service_notification_commands   notify-service-by-email
  host_notification_commands      notify-host-by-email
  register                        0
}

This template object has the host_notification_commands and  
service_notification_commands directives defined as notify-host-by-email 
and notify-service-by-email respectively. These are commands similar to what 
we use in service definitions. These commands are defined in commands.cfg:

define command {
  command_name    notify-host-by-email
  command_line    /usr/bin/printf "%b" "***** Icinga  
  *****\n\nNotification Type: $NOTIFICATIONTYPE$\nHost:  
  $HOSTNAME$\nState: $HOSTSTATE$\nAddress: $HOSTADDRESS$\nInfo:  
  $HOSTOUTPUT$\n\nDate/Time: $LONGDATETIME$\n" | /bin/mail -s "**  
  $NOTIFICATIONTYPE$ Host Alert: $HOSTNAME$ is $HOSTSTATE$ **"  
  $CONTACTEMAIL$
}
define command {
  command_name    notify-service-by-email
  command_line    /usr/bin/printf "%b" "***** Icinga  
  *****\n\nNotification Type: $NOTIFICATIONTYPE$\n\nService:  
  $SERVICEDESC$\nHost: $HOSTALIAS$\nAddress: $HOSTADDRESS$\nState:  
  $SERVICESTATE$\n\nDate/Time: $LONGDATETIME$\n\nAdditional  
  Info:\n\n$SERVICEOUTPUT$\n" | /bin/mail -s "**  
  $NOTIFICATIONTYPE$ Service Alert: $HOSTALIAS$/$SERVICEDESC$ is  
  $SERVICESTATE$ **" $CONTACTEMAIL$
}



Icinga Object Configuration

[ 24 ]

These commands are eventually executed to send out e-mail notifications to 
the supplied e-mail addresses. Notice that command_lines uses the /bin/mail 
command to send e-mails, which is why we need a working setup of a SMTP  
server. Similarly, we could use any command/script path to send out custom  
alerts, such as SMS and Jabber. We could also change the above e-mail command  
to change the content format to suit our requirements.

The following figure illustrates the contact and notification configuration:

members

contactgroup

host_notification_commands

admins

contact

icingaadmin

host_notification_commands

command

notify-host-by-email

command

notify-service-by-email

The correlation between hosts/services and contacts/notification commands is 
shown below:

host_name

contact_groups

contactgroups

host

localhost

service

Ping
check_command

command

check_ping

admins
members

contact

icingaadmin

host_notification_commands host_notification_commands

command

notify-host-by-email

command

notify-service-by-email



Chapter 2

[ 25 ]

Summary
In this chapter, we analyzed our current configuration for the Icinga setup which 
monitors a localhost. We can replicate this to monitor a number of other servers 
using the desired service checks. We also looked at how the alerting configuration 
works to send out notifications when something goes down.

In the next chapter, we take a look at how we can extend the current configuration 
setup to monitor remote servers and run checks remotely or from remote servers.





Running Remote  
Checks on Systems

So far, we have seen how to define service checks for a localhost. But the real use case 
of a monitoring server like Icinga is to monitor an entire infrastructure, not to deploy 
Icinga on each of the hosts you would want to monitor. This chapter covers ways 
to monitor remote servers from an Icinga instance, similar to the one we have for 
localhost monitoring. A similar configuration is used to monitor remote servers as 
well, with slight modifications.

There are several different ways of monitoring our infrastructure using remote 
servers, depending on the needs and services we want to monitor.

• Active checks: The monitoring server polls the remote server at fixed 
intervals of time to check the status of the service. For example, the Icinga 
server would periodically run a command to make a test HTTP connection to 
the remote host to fetch the status of the HTTP check.

• Passive checks: The remote hosts check the status of the service themselves 
and submit it to the monitoring server. The hosts would have to report both 
critical and recovery events to the monitoring server.

The type of the check can be configured on a per-service check basis using the 
active_checks_enabled and passive_checks_enabled directives in the service 
object definition.

Both active and passive checks have their appropriate use cases. It is important to 
determine the type of check to be used for your use case. Active checking is generally 
recommended for monitoring services such as HTTP, IMAP, and so on; while passive 
checking is recommended for services that are long running or are generated by 
internal events of the host, such as monitoring a logfile for errors; such an event  
would submit a CRITICAL event to Icinga.

Further, we will have a look at what tools are required for both types of checks.



Running Checks Remotely on Systems

[ 28 ]

Active checks
The monitoring server initiates the checks at specific intervals and their statuses  
are set according to the return value of the check plugin. There are several ways  
to retrieve status of a service, depending on the kind of service it is.

There are majorly two types of services: public services and private services. We will 
look at both of them in this section.

Public services
Publicly available services include services that are accessible over the network, 
either the internal network or via the Internet; basically, ones that can be checked 
by establishing the network connection and optionally making a sample request. 
Examples include HTTP, FTP, SSH, IMAP, SMTP, and MySQL Server.

If, for example, we want to monitor HTTP, SSH, and IMAP services on server1.
example.org, which is some remote host other than the monitoring server itself,  
the host and services configuration would look like the following:

• Host definition:

define host {
  use         linux-server
  host_name   server1.example.org
  alias       Example server 1
  address     172.16.143.22
  hostgroups  linux               ; just an example
}

Icinga's default set of configuration comes with a linux-server host template, 
which is defined in templates.cfg. Following is the configuration for a few  
service checks.

• HTTP, which makes a GET / request on port 80:
define command {
  command_name    check_http
  command_line    $USER1$/check_http -I $HOSTADDRESS$
}

define service {
  use                     generic-service
  host_name               server1.example.org
  service_description     HTTP
  check_command           check_http
}



Chapter 3

[ 29 ]

• SSH:
define command {
  command_name    check_ssh
  command_line    $USER1$/check_ssh $ARG1$ $HOSTADDRESS$
}

define service {
  use                     generic-service
  host_name               server1.example.org
  service_description     SSH
  check_command           check_ssh
}

• IMAP:

define command {
  command_name    check_imap
  command_line    $USER1$/check_imap -H $HOSTADDRESS$ $ARG1$
}

define service {
  use                     generic-service
  host_name               server1.example.org
  service_description     IMAP
  check_command           check_imap
}

We can play around with command-line arguments that the check plugin such as 
check_http provides; for example, warning/critical threshold values of response 
time, and so on. We will cover the check plugins in detail in next chapter.

Icinga service must be reloaded whenever we update any of the 
configuration files for these changes to take effect.
$ sudo service icinga reload

The reload/restart command verifies the entire configuration 
for syntax or semantics errors, and reports any errors found. It is 
recommended, as a general practice, to always do a configuration 
check before reloading/restarting Icinga.
$ sudo service icinga show-errors

The preceding command verifies the Icinga configuration and 
shows the errors, if any.



Running Checks Remotely on Systems

[ 30 ]

Private services
Private services include various system resource and performance checks, such as 
checks for free disk space, CPU load, memory usage, number of processes, and so 
on. Such information is not available over the network and has to be acquired using 
some intermediate agents that can provide the same when requested. Some of the 
agents are as follows:

• SSH (Linux servers)
• NRPE (Linux servers)
• NSClient++ (Windows servers)
• SNMP (routers, switches, and so on)

These agents can also be used to check for public services that are not necessarily 
accessible from the Icinga server, or the purpose of the check is different. For example, 
to test the reachability of web server running on server1 from server2 (both of 
which are different from Icinga server), running the HTTP check for server1 from 
Icinga server would not serve the purpose. This use case will use one or more of 
these agents running on server2 so that they can provide Icinga with the status of 
reachability of server1.

Secure Shell (SSH)
The simplest way to get any information from a Linux server is to run SSH  
on the remote server and run any command/script to get the information.  
The nagios-plugins package provides ready-to-use plugins for such purposes 
(check_load, check_disk, and so on). We have used these in our localhost 
monitoring setup. So, we can define a command to SSH the server, run one of  
these plugins, and return the output, which is determined to set the status of  
the service check on the monitoring server. We also need to ensure that the  
nagios-plugins package is installed on the remote server, so that we have  
all the available check plugins to execute over SSH. Let's look at a configuration  
for disk space check on server1.example.org:

define command {
  command_name    check_by_ssh
  command_line    $USER1$/check_by_ssh -H $HOSTADDRESS$ -C  
  'PATH=$PATH:/usr/lib64/nagios/plugins $ARG1$'
}

define service {
  use                     generic-service



Chapter 3

[ 31 ]

  host_name               server1.example.org
  service_description     Disk
  check_command           check_by_ssh!check_disk -w 20% -c 10%
}

Icinga runs and executes checks as user configured using the  
icinga_user directive in icinga.cfg. So, we need to make  
sure that proper SSH keys are generated for the user on the  
monitoring server, and added to authorized_keys of the  
remote server(s) so that check_by_ssh can execute flawlessly.
To generate SSH keys for the icinga user, use the following command:
$ su icinga –c 'ssh-keygen –t rsa'

Keep pressing Enter to give default values for presented parameters.  
This will generate the SSH public key (~/.ssh/id_rsa.pub) and  
the SSH private key (~/.ssh/id_rsa) in the .ssh directory inside  
the home folder of the icinga user.
It is necessary to put the public key in ~/.ssh/authorized_keys, 
which is in the home folder of the icinga user on the remote host.  
You will have to make sure the icinga user exists on the remote host. 
This will give SSH access to the icinga user on the Icinga server for  
the icinga user on the remote host.
We appended /usr/lib64/nagios/plugins to PATH so that  
the check_by_ssh command object can be re-used to run other  
plugins over SSH, without having to give the full path in the  
command every time.

Nagios Remote Plugin Executor (NRPE)
NRPE is an add-on that is deployed on the remote hosts to execute the check plugins 
on them. It is similar to using SSH; NRPE daemon has to be running on the remote 
server and its configuration should have a command_name to command_executable 
(with arguments) mapping. So, when Icinga executes the check_nrpe check, it uses 
the NRPE command name that we specify in the service definition, then sends it to 
the NRPE agent (daemon) on the remote server. This executes the corresponding 
command line and returns the exit code.

There are pros and cons in using this method instead of using the SSH method.  
SSH gives us more flexibility in terms of running any desired command or  
script over SSH. NRPE has an overhead of defining NRPE command-name  
to command-executable mapping and other required configuration. On the  
other hand, SSH increases the load on the monitoring server if there are a  
large number of checks, due to frequent opening and closing of SSH connections. 



Running Checks Remotely on Systems

[ 32 ]

Each execution of a check calls for a SSH connection, execution, and closing of the 
connection, which is a considerable overhead. Following is an example of the NRPE 
daemon configuration (usually /etc/nrpe.cfg), similar command and service object 
definitions can be used to execute checks over NRPE:

# command[<command_name>]=<command_line>
command[check_users]=/usr/lib64/nagios/plugins/check_users -c 10
command[check_load]=/usr/lib64/nagios/plugins/check_load -c 40%

More information on installation and configuration of NRPE can be found at 
http://docs.icinga.org/latest/en/nrpe.html.

NSClient++
While the above methods are best suited for Linux servers, they are not supported 
for the Windows servers. For this purpose, there is an agent called NSClient++. It is 
the Windows' replacement for Linux's NRPE daemon, although it is cross-platform 
and available for Linux too. The same check_nrpe plugin can be used to run 
commands on remote Windows servers. The plugin contacts the NSClient++ agent 
and asks for the status of one of the commands made available by the agent. The list 
of available commands and their usage can be found in the agent's documentation.

For example, if we have a Windows server with the hostname server2.example.
org, the host definition can be as follows:

define host {
  use             windows-server
  host_name       server2.example.org
  alias           Example server 2
  address         172.16.143.23
  hostgroups      windows               ; just an example
}

Icinga already provides a windows-server host template, found in templates.cfg. 
Following is what the Icinga configuration for checking CPU load would look like 
(NSClient++ supports a command called CheckCPU):

define command {
  command_name    check_nrpe
  command_line    $USER1$/check_nrpe -u -H $HOSTADDRESS$ -c $ARG1$  
  -a $ARG2$
}

define service {
  use                     generic-service



Chapter 3

[ 33 ]

  host_name               server2.example.org
  service_description     CPU
  check_command           check_nrpe!CheckCPU!warn=80 crit=90
}

We'd need a working NSClient++ deployed on the remote Windows server(s)  
for the preceding code to work. Have a look at http://docs.icinga.org/latest/
en/monitoring-windows.html#installwindowsagent for the same. Make sure 
proper whitelisting is done on the Windows server side to allow check_nrpe to  
talk to the agent. The list of commands supported by NSClient++ is available at 
http://www.nsclient.org/nscp/wiki/CheckCommands.

Simple Network Management Protocol (SNMP)
SNMP agents on routers and switches can be used to monitor checkpoints or services 
on them. Monitoring network devices mostly includes simply network traffic and 
open ports check. A wide range of such values is available via SNMP and are called 
the OIDs. Each Object Identifier (OID) has a value associated with it. For example, 
the OID sysUpTime.0 gives the uptime of the device. An example of a host definition 
for a router is as follows:

define host {
  use             generic-switch
  host_name       switch1.example.org
  alias           HP 12504 AC switch
  address         192.168.32.58
  hostgroups      switches              ; just an example
}

An example of a service check for getting the uptime is as follows:

define command {
  command_name     check_snmp
  command_line     $USER1$/check_snmp -H $HOSTADDRESS$ -o $ARG1$  
  $ARG2$
}

define service {
  use                     generic-service
  host_name               switch1.example.org
  service_description     SNMP
  check_command           check_snmp!sysUpTime.0
}



Running Checks Remotely on Systems

[ 34 ]

Readers are advised to read on how to use SNMP to get various kinds of values. 
These values can then be used for monitoring. The check_snmp plugin is used to 
contact the device and query the values via the SNMP agent after supplying relevant 
authorization. The snmpwalk command can be used to get the list of available OIDs 
with a particular device:

$ snmpwalk -mAll –v1 –cpublic switch1.example.org system

The previous command gives you a list of all OIDs and their values as reported by 
the switch device.

Passive checks
Checks that are run by the remote hosts themselves and the status is submitted  
to the Icinga monitoring server are classified as passive checks. In simpler terms, 
Icinga does not actively execute the checks; it just sits and waits for hosts to submit 
the check status periodically.

While active checks are a sure way of getting up-to-date status of the services, 
passive checks are useful in many cases to offload a part of the monitoring to the 
remote servers themselves. Also, passive checks are often used to monitor only the 
private services; it does not make sense to check for the network (public) services 
on servers themselves. External reachability and status should be checked by the 
monitoring server only.

We need to ensure two things in configuration to enable passive checks:

• The accept_passive_service_checks directive in icinga.cfg is set to 1
• The passive_checks_enabled directive is set to 1 in service definition

We would need to have service definitions for passive checks in the same format as 
we have for other usual checks, with just one added directive as noted previously. 
Although Icinga won't do anything about the passive checks, but it needs to know 
that it should expect the check results for that service—hence the service definition.

We also require agents to be deployed on both Icinga and remote servers.  
The following are the required agents:

• Icinga server requires a NSCA add-on, such as the Nagios Service Check 
Acceptor provided by the nagios-nsca package, which runs as a server 
listening for connections, accepts check results from remote hosts and  
writes them to Icinga's processing queue.



Chapter 3

[ 35 ]

• The remote hosts need to have a NSCA client installed. In Linux, it is 
provided by the nagios-nsca-client package, and in Windows you  
can use the NSClient++. The NSCA client submits the given check  
result to the given NSCA server.

The NSCA daemon and client versions should not vary too much. 
There have been compatibility issues with encryption/decryption.

The remote server executes the check script periodically, using cron jobs (for Linux) or 
Task Scheduler (for Windows) or when a relevant event is triggered. Then, it executes 
the send_nsca command, provided by the NSCA client package, that takes a string 
from standard input in the following format and sends it to the Icinga server to report 
the check results:

<host_name>[tab]<svc_description>[tab]<return_code>[tab]<plugin_
output>[newline]

In the preceding line, the description of the parameters is as follows:

• host_name is the hostname of the server, which is defined in the host 
definition, and on which the check is running

• svc_description is the service description of the service check, which is 
defined in the service definition

• return_code is one of the exit codes (0 is OK, 1 is WARNING, and 2  
is CRITICAL)

• plugin_output is the additional information used for debugging the problem

An example of this is given in the next section.

The NSCA client, which is called by the remote scripts, submits the check results by 
connecting to the NSCA server. Then the server forwards the check results to Icinga 
after doing some basic validation.

Let's look at an example configuration for adding a passive check to monitor whether 
/home exists on server1.example.org:

define service {
  use                     generic-service
  host_name               server1.example.org
  service_description     Data
  active_checks_enabled   0
  normal_check_interval   30
  check_command           check_dummy!2!Check result not  
  received
}



Running Checks Remotely on Systems

[ 36 ]

Note that the template service generic-service has both active_checks_enabled 
and passive_checks_enabled set to 1, so we need to set the former to 0 in order to 
make it strictly a passive check. The script on the remote server is to  be run every 
30 minutes, so we set normal_check_interval to 30. Also, we use check_dummy in 
the check command to make the check fail if check results are not submitted within 
the last normal_check_interval minutes. This is done to make sure of the freshness 
of the present check status. See the help section of the check_dummy check plugin to 
know its usage.

The check script to check for existence of a directory, which will be run on the 
remote server, is as follows:

NSCA_HOST="icinga.example.org"  # Icinga server running the NSCA  
  server
NSCA_CONF="/etc/nagios/send_nsca.cfg"

if [[ –d /var/data ]]; then
    ret=0
    output="/var/data exists"
else
    ret=2
    output="/var/data does not exist"
fi

echo "server1.example.org\tData\t$ret\t$output\n" |  
  /usr/bin/send_nsca –H $NSCA_HOST –c $NSCA_CONF

This check script is run as a cron job on server1.example.org and will keep 
submitting check results every 30 minutes. Note that server1.example.org  
and Data in the echo string passed to send_nsca should match the host_name 
directive in the host definition and the service_description directive in  
service definition respectively.



Chapter 3

[ 37 ]

Summary
In this chapter, we looked at various ways of running service checks on remote servers 
and the use cases where these ways can be useful. In general, passive checks are less 
commonly used compared to active checks. But the checks that are expected to run for 
a relatively longer time before they return the status should be setup as passive checks. 
As a rule of thumb, publicly available services should be monitored with active checks, 
while the rest can be over SSH/NRPE or passive checks depending on the nature 
of the service checks. As a fallback method, whenever it is required to run checks 
remotely, checking by SSH is the most flexible and preferred way of executing  
checks remotely.

We will take a look at the most common system resource and performance checks  
for Linux and Windows hosts, and network devices, so as to ensure proper health  
of our servers.





Monitoring Infrastructure, 
Network Services,  

and System Health
In this chapter, we will look into common system health check techniques  
(private services) for Windows and Linux servers and network devices,  
along with their configuration, and setting parent-child relationships  
between Icinga hosts and services.

The nagios-plugins package provides many check plugins for checking  
many common things. More plugins can be found online for specific use  
cases. Nagios Exchange (http://exchange.nagios.org/directory/Plugins)  
and MonitoringExchange (http://www.monitoringexchange.org/) are some  
of the very resourceful sources for useful plugins. Some plugins are even provided  
as distribution packages. It is required to install the nagios-plugins packages  
on both the Icinga server and the servers to be monitored—at the server side  
to run checks for public services from the server, and at the host's side to run  
checks over an agent on hosts. Most of the plugins are installed inside /usr/lib/
nagios/plugins or /usr/lib64/nagios/plugins, depending on the  
machine's architecture.



Monitoring Infrastructure, Network Services, and System Health

[ 40 ]

In this chapter, we will take into consideration the following hostgroups:

• The linux hostgroup is used for all Linux servers.
define hostgroup {
    hostgroup_name      linux
    alias               Linux servers
}

• The windows hostgroup is used for all Windows servers.
define hostgroup {
    hostgroup_name      windows
    alias               Windows servers
}

• The switches hostgroup is used for all switches (the checks would  
also apply to routers).

define hostgroup {
    hostgroup_name      switches
    alias               Network switches
}

Any publicly available service (accessible over an internal network, or the  
Internet from the Icinga monitoring server) can be easily monitored irrespective  
of the operating system of the server hosting it, given that proper whitelisting  
is for the Icinga server in firewalls and other security software. We have covered  
the monitoring of the public services in the previous chapter, so this chapter  
will cover the monitoring of the common private services (such as CPU load,  
disk space, and number of processes) for different operating systems.

Linux servers
Let's add an example Linux server's host object to the linux hostgroup.

define host {
    use             linux-server
    host_name       server1.example.org
    address         192.168.32.56
    hostgroups      all,linux
}



Chapter 4

[ 41 ]

Similarly, we add the hostgroups directive in all our Linux servers' host definitions.

We will use check_by_ssh to perform the private service checks. The common 
command definition is as follows:

define command {
    command_name    check_by_ssh
    command_line    $USER1$/check_by_ssh -H $HOSTADDRESS$ -C 
'PATH=$PATH:/usr/lib64/nagios/plugins $ARG1$'
}

The common service checks for Linux servers include:

• The Secure Shell (SSH) check
• The load check
• The disk check

The Secure Shell (SSH) check
Although the SSH check is a publicly available service, it is important to mention  
this service check here because all the check_by_ssh checks rely on this SSH service, 
and it's a good idea to place a check for SSH itself.

Just a quick look on the SSH check(note that it is check_ssh not check_by_ssh):

define command {
    command_name    check_ssh
    command_line    $USER1$/check_ssh -H $HOSTADDRESS$
}
define service {
    use                     generic-service
    hostgroup_name          linux
    service_description     SSH
    check_command           check_ssh
}

This service check would generate alerts, which we will notice on the web interface, 
if there were a problem with getting SSH access into the server and subsequently.  
All checks relying on it will also start to fail, that is, generate an alert.



Monitoring Infrastructure, Network Services, and System Health

[ 42 ]

The load check
The check_load plugin is provided under the standard directory as mentioned 
earlier. It takes warning (as a -w switch) and critical load values (as a -c switch)  
and returns the corresponding exit status for the currently reported system load 
averages for the past 1, 5 and 15 minutes. The service definition is as follows:

define service {
    use                  generic-service
    hostgroup_name       linux
    service_description  Load
    check_command        check_by_ssh!check_load -w 1,7,11 -c 2,10,15
}

Alternatively, we can define a wrapper check_load_by_ssh command object to be 
able to re-use it generically in other service definitions for some host which is not in 
the linux hostgroup.

define command {
    command_name            check_load_by_ssh
    command_line            $USER1$/check_by_ssh -H $HOSTADDRESS$ -C 
'$USER1$/check_load -w $ARG1$ -c $ARG2$ $ARG3$'
}

define service {
    use                     generic-service
    hostgroup_name          linux
    service_description     Load
    check_command           check_load_by_ssh!1,7,11!2,10,15
}

This service check will give:

• CRITICAL for load averages of more than 2,10,15
• WARNING for load averages of more than 1,7,11
• OK for load averages of less than 1,7,11

We can also divide the load averages by the number of CPU cores using the -r 
switch in check_load, and set warning or critical thresholds on these load averages.



Chapter 4

[ 43 ]

The disk check
The check_disk plugin is available as part of the standard nagios plugins 
package. It allows us to set WARNING and CRITICAL thresholds for the free  
disk space, in terms of specific amount of disk space or a percentage.

define command {
    command_name            check_disk_by_ssh
    command_line            $USER1$/check_by_ssh -H $HOSTADDRESS$ -C 
'$USER1$/check_disk -w $ARG1$ -c $ARG2$ $ARG3$'
}

define service {
    use                     generic-service
    hostgroup_name          linux
    service_description     Disk
    check_command           check_disk_by_ssh!20%!10%
}

This would generate:

• CRITICAL for less than 10 percent of the free disk space
• WARNING for less than 20 percent of the free disk space
• OK for more than 20 percent of the free disk space

The plugin also provides -W/--iwarning and -C/--icritical switches to check 
for percentage of free inode space. We can also specify a particular path (--path), 
partition (--partition), or a mount point (--mountpoint) to check for free  
disk/inode space.

Windows servers
Let's add an example Windows server's host object to the windows hostgroup.

define host {
    use             windows-server
    host_name       server2.example.org
    address         192.168.32.57
    hostgroups      all,windows
}



Monitoring Infrastructure, Network Services, and System Health

[ 44 ]

Similarly, we add the hostgroups directive in all our Windows servers' host 
definitions. We will use check_nrpe with NSClient++ agent to monitor private 
services on Windows servers. The common command definition is as follows:

define command {
    command_name    check_nrpe
    command_line    $USER1$/check_nrpe -u -H $HOSTADDRESS$ -c $ARG1$ 
-a $ARG2$
}

Common checks for Windows servers include:

• The Nagios Remote Plugin Executor (NRPE) check
• The CPU check
• The memory check
• The disk check

The Nagios Remote Plugin Executor  
(NRPE) check
Since we rely on NRPE to deliver data related to check results, it is highly 
recommended to add a service check for NRPE itself to make sure it is working  
fine. Note that this is also a public service (just as SSH is), and can be monitored 
without an agent.

define command {
    command_name            check_nrpe_status
    command_line            $USER1$/check_nrpe -H $HOSTADDRESS$ $ARG1$
}

define service {
    use                     generic-service
    hostgroup_name          windows
    service_description     NRPE
    check_command           check_nrpe_status
}

The service check will generate alert if NRPE is not working, and all other checks 
relying on it will also start to fail.



Chapter 4

[ 45 ]

The CPU check
NSClient++ provides a CheckCPU command under the CheckSystem category.  
It accepts warning and critical thresholds in percentage.

define service {
    use                     generic-service
    hostgroup_name          windows
    service_description     CPU
    check_command           check_nrpe!CheckCPU!warn=50 crit=60 
time=20m time=10s time=4
}

Alternatively, we could write a wrapper command definition for the CPU check:

define command {
    command_line            Check CPU
    command_name            $USER1$/check_nrpe -u -H $HOSTADDRESS$ -c 
CheckCPU -a warn=$ARG1$ crit=$ARG2$ $ARG3$
}

define service {
    use                     generic-service
    hostgroup_name          windows
    service_description     CPU
    check_command           CheckCPU!40!60!time=20m time=10s time=4
}

The preceding check will give:

• CRITICAL for more than has 60 percent CPU load
• WARNING for more than 40 percent CPU load
• OK for less than 40 percent CPU load

The multiple time parameters indicate different time periods over which load 
averages have to be calculated. So, we have multiple CPU load summaries and 
warning/critical thresholds applied to each of them.



Monitoring Infrastructure, Network Services, and System Health

[ 46 ]

The memory check
The CheckMEM command of NSClient++ is also under the CheckSystem modules 
available in the standard checks plugin.

define command {
    command_line            CheckMem
    command_name            $USER1$/check_nrpe -u -H $HOSTADDRESS$ -c 
CheckMEM -a MaxWarn=$ARG1$ MaxCrit=$ARG2$ $ARG3$
}

define service {
    use                     generic-service
    hostgroup_name          windows
    service_description     Memory
    check_command           CheckMEM!50%!60%
}

This check gives:

• CRITICAL for more than 60 percent of used memory
• WARNING for more than 50 percent used memory
• OK for less than 50 percent used memory

The CheckMEM command also provides the type option to specify what type of 
memory we want to monitor. Valid values are page (available page memory),  
paged (used page memory), virtual (used number of pages of swap), or physical 
(available physical memory). The last two are used most commonly.

The disk check
The CheckDisk module is another module of the check commands that includes 
commands such as CheckFileSize and CheckDriveSize. Let us define a check  
for the size of the Windows folder.

define command {
  command_name          CheckFileSize
  command_line          $USER1$/check_nrpe -H $HOSTADDRESS$ 
-c CheckFileSize -a ShowAll MaxWarn=$ARG1$ MaxCrit=$ARG2$ 
File:$ARG3$=$ARG4$
}

define service {
  use                   generic-service
  hostgroup_name        windows
  service_description   Windows Folder Size
  check_command         CheckFileSize!1024M!4096M!_WIN!c:/WINDOWS/*.*
}



Chapter 4

[ 47 ]

The preceding service check would generate alerts for the folder size of _WIN, defined 
as c:/WINDOWS/*.*:

• CRITICAL for size of more than 4096 MB (4 GB)
• WARNING for size of more than 1024 MB (1 GB)
• OK for size of less than 1024 MB (1 GB)

Similarly, to monitor the size of swap space (the pagefile.sys file):

define command {
    command_name            CheckPageFile
    command_line            $USE1$/check_nrpe -H $HOSTADDRESS$ -c 
CheckFileSize -a ShowAll MinWarn=$ARG2$ MinCrit=$ARG1$ File=c:/
pagefile.sys
}

define service {
    use                     generic-service
    hostgroup_name          windows
    service_description     Pagefile.sys Filesize
    check_command           CheckPageFile!1024M!512M
}

The service check would generate alerts for file size of pagefile.sys:

• CRITICAL for less than 1024 MB (1 GB) of the file size
• WARNING for less than 512 MB of the file size
• OK for size of more than 512 MB of the file size

Note that we have used MinWarn and MinCrit to indicate that we want to get alerted 
if the size becomes less than the thresholds. Use MaxWarn and MaxCrit for alerts when 
size becomes more than the thresholds.

The check configuration for monitoring free disk space on drive(s):

define command {
    command_name            CheckDriveSize
    command_line            $USER1$/check_nrpe -H $HOSTADDRESS$ -c 
CheckDriveSize -a ShowAll CheckAll MinWarn=$ARG1$ MinCrit=$ARG2$
}

define service {
    use                     generic-service
    hostgroup_name          windows
    service_description     Disk Volumes
    check_command           CheckDriveSize!20%!10%
}



Monitoring Infrastructure, Network Services, and System Health

[ 48 ]

So this service check would generate:

• CRITICAL for less than 10 percent of the free disk space
• WARNING for less than 20 percent of the free disk space
• OK for more than 20 percent of the free disk space

For the CheckDriveSize command, the values of the 
MaxWarn and MaxCrit options are for the maximum used 
disk space thresholds; whereas MinWarn and MinCrit are 
for the minimum free disk space thresholds.

You can use the Drive attribute to specify the particular drive whose size you want 
to monitor.

Network devices
Let's first define a host for a sw-1.example.org switch. Icinga already provides a 
template host for switches.

define host {
    use             generic-switch
    host_name       hp-ac12504
    alias           HP 12504 AC switch
    address         192.168.32.58
    hostgroups      all,switches
}

Icinga gives a generic-switch template host found in templates.cfg with switch 
specific tweaks. Similarly, we add all switches to the switches hostgroup using the 
hostgroups directive in their host definitions.

Most routers and switches support Simple Network Management Protocol (SNMP) 
for monitoring. SNMP exposes data of the device in the form of variables, which can 
be queried remotely.

We will use the check_snmp check plugin provided by the default nagios plugins 
installation to execute check commands for monitoring the network devices.  
The common command definition is as follows:

define command {
    command_name        check_snmp
    command_line        $USER1$/check_snmp -H $HOSTADDRESS$ -o $ARG1$ 
$ARG2$
}



Chapter 4

[ 49 ]

The identification scheme to identify variables that expose data is called OID  
in SNMP. The OID we want to query is passed using the -o command-line  
option to check_snmp. So we have made it the first argument to the check_snmp 
Icinga command definition and rest of the command-line arguments can be  
passed separately.

The packet loss and RTA check
The packet loss and RTA check is simply a packet loss (ping) and round trip average 
time (average time taken by packet to make a round trip from Icinga server to the 
network device) check between Icinga monitoring server and the switch device.  
The check_ping command already provides this checking functionality, so we won't 
need to use check_snmp for this particular check, instead we use check_ping.

define command {
    command_name        check_ping
    command_line        $USER1$/check_ping -H $HOSTADDRESS$ -w $ARG1$ 
-c $ARG2$ $ARG3$
}

define service {
    use                     generic-service
    hostgroup_name          switches
    service_description     Ping
    check_command           check_ping!300,5%!700,20%
}

The service check will generate:

• CRITICAL for more than 700 ms RTA or more than 20 percent packet loss
• WARNING for more than 300 ms RTA or more than 5 percent packet loss
• OK for less than 300 ms RTA and less than 5 percent packet loss

Note that we can pass more command-line options to check_ping using a third 
argument in the check_command directive of service definition, for example,  
to specify the timeout for the check plugin.



Monitoring Infrastructure, Network Services, and System Health

[ 50 ]

The SNMP status
If we are to monitor switch devices using SNMP, it is important to add a check for 
SNMP itself. We will use the simple uptime command via SNMP to check its status. 
If SNMP fails, the uptime command will also fail resulting in an alert.

define service {
    use                     generic-service
    hostgroup_name          switches
    service_description     SNMP
    check_command           check_snmp!sysUpTime.0
}

In the preceding code, sysUpTime.0 is a SNMP OID for getting the uptime value.  
If this service check fails, all other service checks relying on SNMP will also  
start failing.

The network port check
The network port check would monitor a network port and report if it is responding.

define service {
    use                     generic-service
    hostgroup_name          switches
    service_description     Port 443 status
    check_command           check_snmp!ifOperStatus.443!-r 1
}

This service check queries for the IOD ifOperStatus.443, in which the .443 part 
indicates that we want to check the port 443. The second argument -r 1 indicates 
that we expect the value 1 to be returned (1 means it is in the UP state). So it  
will give:

• CRITICAL if SNMP returns a value other than 1
• OK if SNMP returns the value 1



Chapter 4

[ 51 ]

Parent-child relationships and service 
dependencies
Icinga gives an ability to define the parent-child host relationships and service 
dependencies among service checks. This is important because:

• If a switch or router fails, all servers behind them will also become 
unreachable. Then Icinga would generate host alerts for all such  
servers and for the service checks defined on them. If we define  
the network device to be the parent of the servers behind it,  
Icinga will automatically suppress notifications for hosts behind  
the network device and perform service checks on them.

• If the SSH or NRPE service fails on a Linux or Windows server respectively, 
all service checks relying on these services would also fail and we will have 
many alerts. So we define service dependencies and make other services 
dependent upon SSH and NRPE. This would tell Icinga to suppress alerts  
for dependent service checks if the service depended upon fails.

Relationships between the hosts
Declaring relationships between the host is simple. The host object type provides 
the parents directive for this purpose. Suppose we have server1.example.org 
and server2.example.org behind a sw-1.example.org switch. When the switch 
goes down, Icinga will generate DOWN alerts for all servers behind it. In most 
cases, this is not desirable because once we get alerted about the switch being down, 
it is expected that the hosts behind it will also be unreachable. To suppress these 
subsequent alerts, we need to define relationships between the hosts in the host 
definitions as follows:

define host {
    use             generic-switch
    host_name       sw1.example.org
    address         192.168.32.1
    hostgroups      all,switches
}

define host {
    use             linux
    host_name       server1.example.org
    address         192.168.32.56
    hostgroups      all,linux



Monitoring Infrastructure, Network Services, and System Health

[ 52 ]

    parents       sw1.example.org
}

define host {
    use             windows
    host_name       server2.example.org
    address         192.168.32.57
    hostgroups      all,windows
    parents       sw1.example.org
}

The preceding definitions will make sw1.example.org the parent of server1.
example.org and server2.example.org. When Icinga detects it cannot reach either 
of the servers, its reachability logic comes in and checks for reachability of their 
parents' and children's hosts and figures out the point of failure in the network map. 
It then marks the hosts behind the point of failure in an UNREACHABLE state.

By default Icinga will send notifications for an UNREACHABLE state too. So to 
suppress the notifications for such cases, we need to remove the unreachable (u) 
option from the value of the notification_options directive in host definitions.

define host {
    use                    generic-host
    host_name             server1.example.org
    notification_options  d,r
}

This can optionally be put in the host templates to affect all the hosts. Now with 
these two things (host relationships and exclude (u) option in host definition) 
configured, we will get only one notification when the switch is down.

Note that the web interface will still show all the servers and service checks on them 
as CRITICAL; only their notifications (e-mail and so on) will be suppressed.

Using these host relationships, Icinga builds a network map consisting of a graph 
with network devices and hosts at nodes connected from the monitoring servers to 
the root-level hosts in the tree, and then their children as their nodes. Following is a 
screenshot of an example network map:



Chapter 4

[ 53 ]

Network Map



Monitoring Infrastructure, Network Services, and System Health

[ 54 ]

Service relationships
Declaring service relationships is a little more complicated compared to  
host relationships. Here, we need to define Icinga objects of the type 
servicedependency to declare such dependency relationships.

Let's say we have a server.example.org server with the following host definition 
and ping, then HTTP and SMTP service checks:

define host {
    use                     generic-host
    host_name               server.example.org
}

define command {
    command_name            check_ping
    command_line            $USER1$/check_ping -H $HOSTADDRESS$
}
define service {
    use                     generic-service
    host_name               server.example.org
    service_description     Ping
    check_command           check_ping
}

define command {
    command_name            check_http
    command_line            $USER1$/check_http -H $HOSTADDESS$
}
define service {
    use                     generic-service
    host_name               server.example.org
    service_description     HTTP
    check_command           check_http
}

define command {
    command_name            check_smtp
    command_line            $USER1$/check_smtp -H $HOSTADDESS$
}
define service {
    use                     generic-service
    host_name               server.example.org
    service_description     SMTP
    check_command           check_smtp
}



Chapter 4

[ 55 ]

With this configuration, we would want that when the ping check fails, we will 
know other checks would also fail, and there would be no unnecessary alert floods 
regarding them. So, we have to make HTTP and SMTP checks dependent on ping 
check. Here's how we see the definition:

define servicedependency {
    host_name                           server.example.org
    service_description                 Ping
    dependent_service_description       HTTP,SMTP
}

The object definition would make the checks in the dependent_service_description 
directive depend on the checks in the service_description directive. Note that the 
values of these directives should match those specified in the service_description 
directive in service object definitions. Both the directives can have a comma-separated 
list of service descriptions, if needed. The following figure depicts the dependencies:

server.example.org

Ping

HTTP SMTP

Dependency graph of Ping, HTTP, and SMTP service checks

Similarly for checks executing over SSH, we would define similar dependency 
objects. Let's look at the example of making load and disk checks dependent  
on the SSH check:

define servicedependency {
    host_name                           server.example.org
    service_description                 SSH
    dependent_service_description       Load,Disk
}

The SSH check, of course, should in turn be dependent upon the ping check:

define servicedependency {
    host_name                           server.example.org
    service_description                 Ping
    dependent_service_description       HTTP,SMTP,SSH
}



Monitoring Infrastructure, Network Services, and System Health

[ 56 ]

The following figure depicts this:

Dependency graph for Ping, HTTP, SMTP, SSH, load, and disk services

A similar dependency can be defined for NRPE checks on the Windows servers. 

With these dependency relationships in place, Icinga now has a dependency  
tree-map of service checks which it would use to figure out what notifications  
it should suppress. Failing to perform the ping check won't alert about HTTP,  
SMTP, and SSH checks failing. SSH check failing won't alert about load and  
disk checks failing.

But this approach of configuration may be cumbersome since we have to do this 
separately for each host and dependent service check. This use case is a relatively 
common one that is used across most of the servers. In this case, we can pass 
hostgroup to service dependency.

define servicedependency {
    hostgroup_name                      linux
    service_description                 SSH
    dependent_service_description       Load,Disk
}

define servicedependency {
    hostgroup_name                      windows
    service_description                 NRPE
    dependent_service_description       Memory,Windows Folder Size
}



Chapter 4

[ 57 ]

This would apply this dependency relationship on all hosts of the specified 
hostgroups. But this is still a little cumbersome since we have to keep adding  
service checks to the list in the dependent_service_description directive  
as and when they come up, which may get overlooked at times. So what we  
can do is define service groups (this is the same as hostgroups, that is, a group  
of services),put all dependent service checks in the service groups, and then  
simply specify the service group in the dependency object.

One could argue that it is one and the same because we will ultimately need to put a 
list of service checks in the service groups' definition. But that's not the only option, 
there's a better way to do it.

Let's define ssh_dependent service group, which will have relevant service checks 
as its members:

define servicegroup {
    servicegroup_name           ssh_dept
}

define service {
    ...
    service_description         Load
    ...
    servicegroups               ssh_dept
}

define service {
    ...
    service_description         Disk
    ...
    servicegroups               ssh_dept
}

Using the servicegroups directive in service definition, we can easily assign 
member service checks to desired service groups. Then, we only need to use this 
service group in the dependency definition:

define servicedependency {
    service_description             SSH
    dependent_servicegroup_name     ssh_dept
}

Note that the preceding definition assumes there is a SSH service check defined for 
servers having load and disk checks.



Monitoring Infrastructure, Network Services, and System Health

[ 58 ]

The preceding dependency definition would make all the service checks that are 
members of the ssh_dept service group depending on the SSH service check of 
respective hosts. Note that, in this method, we don't require a hostgroup to be 
specified in the dependency object definition. We have SSH and other service checks 
(disk, load, and so on) that are involved in the dependency defined to apply on the 
linux hostgroup. Icinga will apply this dependency on all hosts that have these 
service checks. Similar configuration can be applied to Windows servers:

define servicegroup {
    servicegroup_name           nrpe_dept
}
define service {
    ...
    service_description         Memory
    ...
    servicegroups               nrpe_dept
}
define service {
    ...
    service_description         Windows Folder Size
    ...
    servicegroups               nrpe_dept
}
define servicedependency {
    service_description             NRPE
    dependent_servicegroup_name     nrpe_dept
}

For common checks for public services, the configuration is as follows:

define servicegroup {
    servicegroup_name           ping_dept
}
define service {
    ...
    service_description         HTTP
    ...
    servicegroups               ping_dept
}
define service {
    ...
    service_description         SMTP
    ...
    servicegroups               ping_dept
}
define servicedependency {
    service_description             Ping
    dependent_servicegroup_name     ping_dept
}



Chapter 4

[ 59 ]

The following figure shows the service group dependencies:

server.example.org

Ping

ping_dept servicegroup

nrpe_dept servicegroup

NRPE
HTTP SMTP

Memory Windows

Folder Size

Service group dependency graph

Summary
This chapter covered the most commonly used system health checks that looked  
into most aspects of health monitoring for Windows/Linux servers and network 
devices, along with sample configuration and the best practices that should  
be followed.

We also saw how we can define relationships among hosts and dependencies among 
services to suppress alerts during a relatively big outage or a system failure and let 
Icinga pinpoint administrators to the point of failure in the infrastructure.

In the next chapter, we will move on to look at notification configuration and the 
options to customize notification options, and also how to write custom plugins.





Host and Service  
Availability Reporting

Alerting is an important aspect of monitoring. There is no reason in having monitoring 
systems if we don't have efficient and impromptu alerting mechanisms in place.  
As discussed in previous chapters, Icinga provides a flexible way of configuring the 
type of alerts to send. Icinga itself isn't aware of the alerting mechanism. It simply 
knows when to call a notification (shell) command according to the Icinga notification 
configuration. Icing supplies the necessary details about the problem to the command, 
and the command takes over from there to use whatever mode of alerting it is 
programmed to use and actually send the alert. This flexibility allows us to easily 
extend and add custom alerting mechanisms, and simply configure Icinga to use it.

Each host/service definition has Icinga contact objects associated with it (using the 
contacts directive, a comma-separated list). Each contact object has directives to 
specify the name of the Icinga command object that it should use for notification. 
This command object has a directive to specify the exact command (as it would  
look in a terminal) to execute the command object. So, when a host/service check 
goes critical, its contacts are looked up and the associated command objects are 
called, which in turn execute the command that actually handles the sending of  
the notification.

This notification command can be a script to send an e-mail or an SMS, or to have a 
message posted to a Jabber contact (using a Jabber bot), or an API call (using cURL 
for instance) to an external system. The script is usually put at a convenient location, 
which is called by the notification command and is executed to do its processing.

In this chapter, we will understand how to configure Icinga for notifying contacts 
about problems, and customize various associated parameters.



Host and Service Availability Reporting

[ 62 ]

Default configuration
The default Icinga installation has basic monitoring already setup (the one that we 
saw for localhost monitoring) along with e-mail alerting. Let's take a quick look 
again at one of the service checks, HTTP.

The service check definition, as in localhost.cfg, is as follows:

define service {
    use                     local-service
    host_name               localhost
    service_description     HTTP
    check_command           check_http
#   notifications_enabled   0       ; make sure this is commented
}

The HTTP check inherits the local-service template service, which in  
turn inherits the generic-service template service that has the contact  
information (templates.cfg):

define service {
    name                            generic-service
    active_checks_enabled           1
    passive_checks_enabled          1
    parallelize_check               1
    obsess_over_service             1
    check_freshness                 0
    notifications_enabled           1
    event_handler_enabled           1
    flap_detection_enabled          1
    failure_prediction_enabled      1
    process_perf_data               1
    retain_status_information       1
    retain_nonstatus_information    1
    is_volatile                     0
    check_period                    24x7
    max_check_attempts              3
    normal_check_interval           10
    retry_check_interval            2
    contact_groups              admins
    notification_options            w,u,c,r
    notification_interval           60
    notification_period             24x7
    register                        0
}



Chapter 5

[ 63 ]

The preceding template has contact_groups defined as admins, which is an  
Icinga contactgroup definition (essentially a group of Icinga contact objects)  
in contacts.cfg:

define contactgroup {
    contactgroup_name       admins
    alias                   Icinga Administrators
    members              icingaadmin
}

The admins contact group has icingaadmin as a contact member:

define contact {
    use             generic-contact
    contact_name    icingaadmin
    alias           Icinga Admin
    email         icinga@localhost
}

The email directive in the preceding definition should reflect the e-mail address that 
we had set in Chapter 1, Installation and Configuration, in order to receive a test alert.

So far, we have the HTTP service check associated with the admins contact  
group which has icingaadmin as a member contact, and which has an e-mail  
address. So far so good. We still don't have the notification command used  
to send alerts. Let's dig deeper.

The icingaadmin contact inherits a generic-contact template contact, which has 
the notification commands (templates.cfg):

define contact {
    name                                generic-contact
    host_notification_period            24x7
    service_notification_options        w,u,c,r,f,s
    host_notification_options           d,u,r,f,s
    service_notification_commands   notify-service-by-email
    host_notification_commands      notify-host-by-email
    register                            0
}



Host and Service Availability Reporting

[ 64 ]

The contact definition template has both a service_notification_commands 
directive and a host_notification_commands directive that specify the notification 
commands to be used for service alert and host alert respectively. Since we have  
the HTTP service check into consideration for now, we will look at the former.  
The notify-service-by-email object is an Icinga command object (commands.cfg):

define command {
    command_name    notify-service-by-email
    command_line    /usr/bin/printf "%b" "***** Icinga *****\n\
nNotification Type: $NOTIFICATIONTYPE$\n\nService: $SERVICEDESC$\
nHost: $HOSTALIAS$\nAddress: $HOSTADDRESS$\nState: $SERVICESTATE$\n\
nDate/Time: $LONGDATETIME$\n\nAdditional Info:\n\n$SERVICEOUTPUT$\n" 
| /bin/mail -s "** $NOTIFICATIONTYPE$ Service Alert: 
$HOSTALIAS$/$SERVICEDESC$ is $SERVICESTATE$ **" $CONTACTEMAIL$
}

This command object definition specifies the long command_line object to be 
executed for this command. The command line, in this case, builds the entire body of 
the e-mail, pipes it to /bin/mail that is passed a subject, and sends the e-mail to the 
address given by $CONTACTEMAIL$. The following figure illustrates the configuration 
objects and how they are related:

service

contactgroup

contact_groups

members

HTTP

HTTP

contact

command

icingaadmin

service_notification_commands

notify-service-by-email

Relationship among service, contact group, contact, and command objects that form  
the notification configuration



Chapter 5

[ 65 ]

As you may have noticed, there are a lot of parameters used in the command line. 
These are the Icinga macros that can be used inside object definitions. The Icinga 
documentation has an exhaustive list of available macros (and the types of objects 
each is available in). Let's look at the ones used here, with the values they will take 
for the HTTP service check example:

• $NOTIFICATIONTYPE$: This macro takes the type of notification to be  
sent, that is, problem/recovery. When Icinga detects the service to be 
CRITICAL, it sends a problem notification, and when it becomes OK,  
it sends a recovery notification.

• $SERVICEDESC$: This macro takes the value of the service_description 
directive in the service object for the check this notification is for.  
Our example will take the HTTP value.

• $HOSTALIAS$: This macro takes the value of the alias directive in host object 
to which this service check belongs. If this directive is not specified, it takes 
the value of the host_name directive. Our example will have a localhost as  
its value.

• $HOSTADDRESS$: This macro takes the value of the host_address directive in 
the same host object as above. Our example will take 127.0.0.1 as the value.

• $SERVICESTATE$: This macro takes the current state of the service check,  
that is, either one from CRITICAL, WARNING, UNKNOWN, or OK.  
When the HTTP service is down, this value will be CRITICAL, and when  
it recovers, the value will be OK.

• $LONGDATETIME$: This macro gives the date/time when the service check 
went from CRITICAL to OK. The format is defined with the date_format 
directive in the main icinga.cfg configuration file.

• $SERVICEOUTPUT$: This macro gives the output of the service check as 
reported by the check plugin. Our example will show something like   
HTTP CRITICAL, which means that the macro is unable to open the  
TCP socket as the value when the check goes CRITICAL.

• $CONTACTEMAIL$: This macro takes the value of the email directive in contact 
definition, in which the said command object is defined. Our example will 
take the e-mail address that we had defined in Chapter 1, Installation and 
Configuration, (your@email.com) as the value of this macro.



Host and Service Availability Reporting

[ 66 ]

Each of the preceding macros is replaced with its value in the command line and 
the resulting command string is executed. The resulting command string for our 
example will look similar to the following:

/usr/bin/printf "%b" "***** Icinga *****\n\nNotification Type: PROBLEM\n\
nService: HTTP\nHost: localhost\nAddress: 127.0.0.1\nState: CRITICAL\n\
nDate/Time: 07-03-2013 13:47:52\n\nAdditional Info:\n\nHTTP CRITICAL - 
Unable to open TCP socket\n" | /bin/mail -s "** PROBLEM Service Alert: 
localhost/HTTP is CRITICAL **" your@email.org

The e-mail message, as we would receive it, would look similar to the following:

From: icinga@localhost

To: your@email.com

Subject: ** PROBLEM Service Alert: localhost/HTTP is CRITICAL **

***** Icinga *****

Notification Type: PROBLEM

Service: HTTP

Host: localhost

Address: 127.0.0.1

State: CRITICAL

Date/Time: 07-03-2013 13:47:52

Additional Info:

HTTP CRITICAL - Unable to open TCP socket

We will also receive a similar e-mail when the service recovers.

Customizing notification behavior
We looked at the basic and default notification configuration provided by Icinga. 
There are a number of customizations possible on top of it, some of which are 
covered in this section.



Chapter 5

[ 67 ]

Service definitions
Service objects offer some directives to control or specify whether, which, and how 
the notifications should be sent out.

• The notifications_enabled directive is used to enable/disable (0/1) 
notifications for a service check. This is useful to perform extremely 
noncritical checks, for which we don't need notifications. The default  
value is 1, and should only be set to 0 to disable notifications.

• The notification_options directive determines what kind of notifications 
should be sent for the service check. The notification options that can be 
specified as the value are as follows:

 ° w = WARNING
 ° u = UNKNOWN
 ° c = CRITICAL
 ° r = RECOVERY

So, suppose we don't want to receive the WARNING and UNKNOWN notifications, 
we can simply have c and r as the value of this directive in the service 
definitions, which will send only the CRITICAL and RECOVERY notifications.

• The first_notification_delay directive determines the time to wait before 
sending out the first notification after a service check enters a non-OK state. 
The value is the number of time units, and the length of a time unit is defined 
by the interval_length directive in icinga.cfg, which defaults to 60 
seconds. This is useful if we expect intermittent problems and that they will 
recover within a certain time automatically; we don't need a notification if it 
actually recovers within the expected time. The default value is 0, which means 
Icinga should send out a notification immediately.

• The notification_interval directive determines the time after which a 
contact should be notified again that the service is still in the non-OK state. 
The value is again the number of time units. The service template has this 
set to 60; it means that the contacts will be renotified about the problem if a 
service check stays in the non-OK state for more than 60 minutes (or 1 hour). 
To disable such reminder notifications, set this value to 0.



Host and Service Availability Reporting

[ 68 ]

• The notification_period directive describes the time of the day/week/
month/year to which the notifications should be restricted. This is specified 
by the Icinga timeperiod object. This timeperiod object defines the periods 
of time, such as selected days of a week, or selected hours in a day. The service 
template has the timeperiod object as 24x7, as the value of this directive.  
Let's look at its definition (timeperiods.cfg):

define timeperiod {
    timeperiod_name 24x7
    alias           24 Hours A Day, 7 Days A Week
    sunday          00:00-24:00
    monday          00:00-24:00
    tuesday         00:00-24:00
    wednesday       00:00-24:00
    thursday        00:00-24:00
    friday          00:00-24:00
    saturday        00:00-24:00
}

The preceding timeperiod object defines an all-time time period for all 
days in a week and all hours in a day. This means the notifications can be 
sent out for the said service at all times.
Similarly, we can restrict the time at which the alert for the service should 
be sent by defining a more restrictive timeperiod object and using this 
notification_period directive in the service definition. There is an 
timeperiod object named as workhours,  already defined in default 
configuration; let's have a quick look at it for clarity:
define timeperiod {
    timeperiod_name workhours
    alias           Normal Work Hours
    monday          09:00-17:00
    tuesday         09:00-17:00
    wednesday       09:00-17:00
    thursday        09:00-17:00
    friday          09:00-17:00
}

The preceding timeperiod object defines normal work hours, that is,  
only 9 a.m. to 5 p.m. on weekdays. If this time period is used in any  
of the service checks, no notifications will be sent for the service checks 
outside of these work hours.



Chapter 5

[ 69 ]

Contact definitions
Notification options can also be customized inside contact definitions. Let's look at 
various available directives:

• The host_notifications_enabled and service_notifications_enabled 
directives can be used to enable/disable (0/1) the host/service notifications 
on the basis of contacts. The default value is 1. The value(s) should be set to 0 
to explicitly disable notifications for the contact.

• The host_notification_period and service_notification_period 
directives can, again, be used to specify the Icinga timeperiod objects,  
only within which the notifications to this particular contact should be  
sent out. This may be useful if only an on-duty person should receive 
notifications 24x7 and the boss should receive it only during work hours.

• We have already looked at host_notification_commands and  
service_notification_commands. Note that the value of these  
directives can be a comma-separated list of command names if we  
want multiple commands to be executed for notifications.

• The email directive, as seen in the earlier sections, is used to specify the 
e-mail address of the contact. This is accessible using the $CONTACTEMAIL$ 
Icinga macro in command objects.

• The pager directive is used to specify the mobile number of the contact, 
which is available via the $CONTACTPAGER$ Icinga macro in command objects.

• The addressx directives are used to specify the other miscellaneous 
addresses for the contact (Jabber ID and so on). The value of x ranges from 
1 through 6, each of which is available via the $CONTACTADDRESSn$ macros, 
where again n ranges from 1 through 6.

The host/service escalation
Escalation is basically if person1 receives an alert and the problem continues  
to be there for x number of minutes then a notification should be sent (escalated)  
to person2.

Escalation is another aspect of notification configuration and can be done using the 
hostescalation and serviceescalation Icinga objects. These objects are used to 
define escalation paths to various people. This path can go on as long as we have 
configured it.



Host and Service Availability Reporting

[ 70 ]

The escalations work when there is notification_interval defined in the service 
definition, which will re-notify contacts after the defined interval. Escalation logic 
kicks in when the serviceescalation object is defined. In the object definition,  
we define the contacts that should be notified at the nth renotification.

For example, we have three contacts defined: onduty, techlead, and manager.  
We want the onduty contact to be notified immediately, techlead if the check  
does not recover within 15 minutes, then notify the techlead if it does not recover 
within the next 15 minutes (30 minutes from the start), and finally to notify the 
manager contact if it does not recover within the next 15 minutes (45 minutes from 
start). For such a scenario, we need to set the notification_interval directive  
to 15 minutes (assuming the length of a time unit is one minute in the main 
configuration) in a service object definition, so that Icinga will retrigger the  
notification every 15 minutes until the check recovers. Now, we also need to define 
two serviceescalation objects as follows (we will use the localhost host and the 
HTTP service as examples; this can be used in the same way for remote hosts too):

define serviceescalation {
    host_name               localhost
    service_description     HTTP
    first_notification      2
    last_notification       3
    contacts                techlead
}

define serviceescalation {
    host_name               localhost
    service_description     HTTP
    first_notification      4
    last_notification       0
    contacts                manager
}

The preceding escalation definitions have the first_notification and  
last_notification directives, which determine the number of notifications  
for which the given escalation is valid. The first_notification directive  
specifies n for nth notification, with which this escalation becomes valid.  
The last_notification directive specifies n for nth notification, with which  
the escalation becomes ineffective. Escalation being valid implies that the  
contacts specified in the escalation will be notified. When the service goes  
CRITICAL, the onduty contact is immediately notified as the first notification.



Chapter 5

[ 71 ]

For the first escalation definition, escalation becomes valid with the second notification 
(first_notification is 2) for the service and will become ineffective after the third 
notification (last_notification is 3) has been sent out. So, the second and the third 
notifications will be sent to the techlead contact after 15 and 30 minutes each.

For the second escalation definition, escalation becomes valid with the fourth 
notification (first_notification is 4) being sent out for the service and will never 
become ineffective (last_notification is 0). So the fourth notification (after 45 
minutes) will go to the manager contact and will be notified every 15 minutes until 
the service check recovers.

The following table puts together a timeline for this example:

Timestamp Service 
State

n (nth 
notification)

Explanation

05:00 CRITICAL 1 The onduty contact is immediately notified.
05:15 CRITICAL 2 First serviceescalation kicks in  

(first_notification is 2) and the 
techlead contact is notified.

05:30 CRITICAL 3 The techlead contact is notified again  
and first serviceescalation ends  
(last_notification is 3).

05:45 and 
onward

CRITICAL 4 Second serviceescalation kicks in 
(first_notification is 4), the manager 
contact is notified and will be notified  
every 15 minutes until the service recovers,  
as this escalation never ends  
(last_notification is 0).

A similar configuration can be made for host escalations too:

define hostescalation {
    host_name               localhost
    first_notification      2
    last_notification       3
    contacts                techlead
}

define hostescalation {
    host_name               localhost
    first_notification      4
    last_notification       0
    contacts                manager
}



Host and Service Availability Reporting

[ 72 ]

Let's take a quick look at various other directives offered by escalation objects to 
control notifications:

• The first_notification and last_notification directives, as we  
saw earlier, define the number of notifications for which the escalation  
stays valid.

• The notification_interval directive can be used to specify the time to 
wait before sending a notification to the contact in the escalation that is 
similar to the directive in service definition.

• The escalation_period directive can be used to specify the time period object 
for which the escalation stays valid (apart from the first and last notification 
numbers). The same timeperiod object can be used, and is optional.

• The escalation_options directive is used to specify which notifications to 
send to the contacts of this escalation. Options are as follows:

 ° w = WARNING
 ° u = UNKNOWN
 ° c = CRITICAL
 ° r = RECOVERY

This is similar to the corresponding directive in the service definition.

• The first_warning_notification, last_warning_notification,  
first_critical_notification, last_critical_notification,  
first_unknown_notification, and last_unknown_notification 
directives are used to specify different notification numbers for the 
WARNING, CRITICAL, and UNKNOWN states of the service check.  
This works in a similar way to the first and last notification number 
directives, except that the one that is more applicable according to the  
service state is used.

This covers most of the configuration options that Icinga provides to customize the 
behavior of notifications.



Chapter 5

[ 73 ]

Summary
At this point, we have seen how basic notifications work, starting from the service 
check, to contact, to command. We saw how to restrict notifications to be sent only  
at a certain time, how to send a specific type of notifications. We also saw how to 
configure various contacts to receive notifications if a long duration outage occurs 
without manual intervention from people already troubleshooting the issue  
and relevant people need to be notified. A more comprehensive and minutely 
detailed explanation of various directives can be found in Icinga's official object  
definition documentation.

In the next chapter, we look into how we can extend Icinga with custom plugins and 
leverage its flexibility to suit our customization requirements.





Icinga Plugins
As mentioned in earlier chapters, Icinga maintains abstraction over the internal 
implementation of check plugins and how the status checks are performed. It only 
knows what it has to monitor and what commands it has to use to get the status of 
the services that are being monitored. It does not have details about any internal 
mechanism for performing status checks; it relies on external programs and  
commands to do the dirty work.

These external programs are called plugins. A plugin can be any executable  
(a compiled program or a script), which can be run from the command line.  
Icinga will execute the plugin configured for each service check and determine  
the status of the service from the exit status of the plugin. Icinga is not aware  
of the internal logic or implementation of the plugin itself. Once Icinga has the  
status of the service check, it calls notification commands or event handlers  
based on its configuration.

Note that the plugins can also be used to perform host checks. Each host object 
definition also has a check_command directive, which refers to the Icinga command 
object that is used to determine the status of the host. This check command can refer 
to a plugin that implements the checking of the host status and reports the status 
back to Icinga. So depending on whether the plugin is used for a host status check  
or service status check, it sets the relevant macros to values as reported by the 
plugins. This will be explained shortly.

Icinga's default installation comes with a number of plugins, and a few others  
are provided by the nagios-plugins package. Other plugins for performing  
more specific checks are available as separate packages, for example,  
nagios-plugins-dhcp. Most standard check plugins provide a --help  
command-line option to see the usage and options provided by the plugin.



Icinga Plugins

[ 76 ]

Writing custom plugins
It is also possible to write custom check plugins, which can be scripts (bash, python, 
and so on) or compiled programs (C, Java, and so on). These plugins need to comply 
with a minimum two things:

• The exit codes, 0=OK, 1=WARNING, 2=CRITICAL, and 3=UNKNOWN, which are 
stored in the $HOSTSTATEID$ and $HOSTSTATE$ macros for host checks,  
and the $SERVICESTATEID$ and $SERVICESTATE$ macros for service checks

• At least one line of output written to STDOUT, which is stored in the 
$HOSTOUTPUT$ macro for host checks and the $SERVICEOUTPUT$ macro  
for service checks

Apart from these, the plugin can output the following:

• Multiline output written to STDOUT; Icinga will accept and store more lines  
of output in the $LONGHOSTOUTPUT$ or $LONGSERVICEOUTPUT$ macro.

• Output written to STDOUT is stored as performance data for other 
applications, which need to be processed. It is stored in the $HOSTPERFDATA$ 
or $SERVICEPERFDATA$ macro. (The performance data is used for various 
graphing and reporting purposes among other possible use cases.)

The format of the output that will be parsed into these macros is  as follows:

Plugin output interpretation (The fonts of the lines are changed for representational purpose only)

The line seen in the bold style is stored in the $HOSTOUTPUT$ or $SERVICEOUTPUT$ 
macro and the rest of the parts are optional. The lines seen in the italic style are stored 
in the $LONGHOSTOUTPUT$ or $LONGSERVICEOUTPUT$ macro. The lines in normal text 
format are stored in the $HOSTPERFSDATA$ or $SERVICEPERFDATA$ macro. The lines  
of output and performance data output are separated by pipe (|) symbol.



Chapter 6

[ 77 ]

For example, if we have a check script that writes the following output to STDOUT:

Sample output of the check_disk check plugin

The bold part of the output will be stored in the $SERVICEOUTPUT$ macro and  
the part seen in normal font will be stored in the $SERVICEPERFDATA$ macro.  
Since there are no long text lines between first line of output and the pipe symbol,  
the $LONGSERVICEOUTPUT$ macro for the long output will have an empty value.

Another example of a check script output is as follows:

Full sample output of the check_disk check plugin

Icinga will only read the first 8 KB of output that a plugin writes to STDOUT. This is to 
prevent overflow of data reported to Icinga.

All plugins that the Icinga server executes are executed as the 
operating system user that is configured in the main configuration 
file icinga.cfg by the value of the icinga_user directive, 
which is icinga by default. We have to make sure to have proper 
permissions in place (make it executable for the icinga user,  
give sudo-permissions permissions if required, and so on).



Icinga Plugins

[ 78 ]

Integrating custom plugins
Let's say we wrote a custom sample-plugin.sh check plugin that takes some 
arguments and gives check results.

First, we need to put the check plugin at a proper path in the filesystem. Place the 
check script inside the standard plugin installation directory. RedHat/CentOS 
distributions install the plugins inside /usr/lib64/nagios/plugins or /usr/lib/
nagios/plugins, depending on the architecture of the server; this may differ for 
other distributions. Place the check script in one of these directories and make sure  
it is executables the operating system user that Icinga is running as.

Check if we can run the script from the command line as an icinga user:

$ su icinga -c '/usr/lib64/nagios/plugins/sample-plugin.sh 192.168.1.212'

Sample check OK

We use the following command with the path in the Icinga command object 
definition; let's call it check_sample:

define command {

    command_name    check_sample

    command_line    /usr/lib64/nagios/plugins/sample-plugin.sh 
$HOSTADDRESS$ $ARG1$ $ARG2$

}

Now we can use the following command object in service definitions using the 
check_command directive:

define service {

    ...

    check_command    check_sample!argument1!argument2

    ...

}

As mentioned earlier, arguments to be passed to the check script are separated  
by an exclamation (!) sign in the check_command directive in a service definition.  
The preceding service check will expand the command line into the following 
(assuming the service check is on a host with the address 192.168.1.212):

/usr/lib64/nagios/plugins/sample-plugin.sh 192.168.1.212 argument1 
argument2

The $ARGn$ macros are defined by corresponding arguments (separated by !)  
passed to the check_command directive.



Chapter 6

[ 79 ]

Threshold and range standards
Most checks are based on some definite range of threshold values. For example, 
generate critical alert if the CPU load is more than 80 percent, warning alert if it is 
between 60 and 80 percent. These values are not restricted to percentages, they can 
be virtually any numbers depending on our check's logic and requirements.

Most check plugins follow a convention in taking threshold ranges as command-
line arguments. This convention may not be followed by all plugins, but most of the 
standard ones do. This is a recommended way of taking threshold ranges so that it is 
easy to understand the usage of the plugin by other potential users. The ranges are 
generally in following format:

[@]start:end

Things to keep in mind about various usages and corresponding interpretations of 
the following:

• Range is indicated by a start value and an end value, and is inclusive  
of both.

• Only start means end is infinity; only end means start is zero (note that 
the latter does not need a colon (:)).

• Alert is raised if value is outside the range. If @ is used, alert is raised if value 
is inside the range.

Let's look at some examples of ranges:

Range example Generate alert if value is
10:20 <10 or >20 (outside range {10..20})
10: <10 (outside range {10..inf})
10 >10 (outside range {0..10})
@10:20 >=10 and <=20 (inside range {10..20})

These threshold values/ranges are usually used for generating warning and critical 
alerts. The -w command-line switch is used to specify a threshold value/range for 
the warning alert, and the -c switch is used to specify the threshold value/range for 
the critical alert. This, again, is a convention, many plugins may not follow. 



Icinga Plugins

[ 80 ]

And some command-line examples are given in the following table:

Command line Interpretation
check_sample -w10 -c20 Critical if >20, warning if >10
check_sample -w10: -c20 Critical if >20, warning if <10
check_sample -w20:30 
-c10:40

Critical if <10 or >40, warning if <20 or >30

This is just a convention for using the plugins. Many plugins don't follow it, and it 
does not apply to plugins that don't need threshold ranges.

Summary
Check plugins (also known as scripts/programs) implement the actual logic for 
checking the status of the desired service; Icinga knows nothing about this logic.  
It only knows about the exit code of the plugin and one or more lines of text written 
by the plugin to give a standard output. Both of these are used to determine and 
describe, respectively, the status of the service in question.

Once the service check status is known, relevant notification logic is used to notify 
contacts whenever there is a change in the state. The alert message is constructed 
using the macros whose values are set according to the exit code and output of  
the plugins.

There are few standards to writing plugins, including the proper exit code and 
output text as understood by Icinga, and accepting warning/critical threshold 
ranges/values. The former is required, while the latter is optional.

In the next chapter, we will take a look at some available web interfaces for an Icinga 
monitoring server. They can be used to view service check statuses of all services 
in a couple of different forms. We will look into how to configure and deploy web 
interfaces and will give an overview of the user-side interface components.



Web Interfaces
In the earlier chapters, we looked into most of the important configuration 
parameters that Icinga provides. We can use them to set up the monitoring 
configuration best suited for our requirements. We now proceed to look into  
the available web interfaces that are actually used to access the information  
and current status of our infrastructure to perform required actions.

Icinga comes with a default web interface, known as Icinga Classic. It is the  
most basic one in terms of the user interface, providing all available ways to  
access information and perform action. It also has another more modern web 
interface, known as Icinga Web. It is advanced in terms of usability, and uses  
more of AJAX to make the interface intuitive. Both versions have a similar set  
of features.

There are many independent web UIs and the Thruk project (www.thruk.org) is  
one of them. It supports a number of monitoring backends such as Nagios, Icinga, 
and Shinken. It is again more intuitive in usability, but is similar to the classic 
interface in design. Thruk has the ability to connect to multiple instances of 
monitoring backends and show the consolidated information in one interface.  
All the classic web interfaces lack this functionality.

Both Icinga Classic and Thruk use CGI scripts to access information from the  
Icinga core and show it in the browser. Each CGI script corresponds to a view  
in the interface. We will look at each of these views and get ourselves acquainted 
with what the interface provides, and what we can do with it.

Icinga Classic
Icinga Classic is the default web interface for Icinga. In this section, we will look into 
various views that this interface provides.



Web Interfaces

[ 82 ]

Authentication
Icinga's Apache configuration, by default, requires the user to provide an 
authentication to access the web interface. This is a simple HTTP authentication 
using a htpasswd file to store usernames and encrypted passwords. The default 
username and password is icingaadmin and icingaadmin respectively. You should 
change this using the htpasswd utility. It can be used to set/update passwords and 
add new users.

# create johndoe user or update its password:
htpasswd /etc/icinga/htpasswd johndoe

If the username is the name of a valid Icinga contact, the web interface will show 
only those hosts and services that are associated with this contact, either directly by 
contacts directive or indirectly via contact groups. So, operational teams managing 
different set of servers can have a contact associated with relevant hosts and services, 
set a password for that username in the htpasswd file, and use the authentication 
details to see only relevant information about the hosts and services.

The Status view
The Status view shows a quick overview of the on-going problems in the network. 
Here is a screenshot of the view from Icinga's official demo website:

The status view



Chapter 7

[ 83 ]

The current default view is the Service Problems page under the Problems section. 
In the preceding screenshot, the table in the center shows that the hosts are gmx-pop, 
gpx-www, web_de-pop, and so on, all these hosts are unreachable, and the relevant 
services on them are also critical. Some services such as SMTP on gmx-smtp are 
critical although the servers are still reachable. The table shows short information on 
details such as the time when last check was performed, the duration that the service 
has been critical for, and the output of the check plugin describing the problem.

The top panel shows a statistical overview of the current network status. The first 
row on the left-hand side shows the number of hosts in various states. The second 
row shows the numbers for services. The three numbers in each state correspond 
to unacknowledged, acknowledged, and total problems in that state. The last entry 
TOTAL in each row shows the number of problems and number of all hosts and 
services. On the top-right corner (inside the panel), the statistics about the Icinga 
core process running are available. You will see indicators for minimum/maximum 
service check execution time, latency, and so on.

The area above the table in the center gives filtering and pagination options.  
There is also a commands dropdown on the right-hand side, providing commands 
such as schedule downtime, and acknowledge a problem. Icinga supports some 
external commands that include setting downtime for service checks during a 
migration, acknowledging a problem to prevent further notifications, or for the 
purpose of records.

Users can select multiple problems at once using the checkbox at the end of each row 
in the table, and execute the selected command on all of them at once. This is helpful 
if there is a widespread outage and we need to acknowledge a number of problems 
on the screen at once.

On the left-hand side of the screen, there is a navigation bar for quickly accessing 
relevant information in the center part.



Web Interfaces

[ 84 ]

A tactical overview
The tactical view is the default view that opens when we open up the web interface. 
It is under the Status category, as shown in the following screenshot:

A tactical overview

This view gives an overview of the network health in terms of host and service 
health. It shows the number of acknowledged and unacknowledged problems in 
various states, along with information such as active/passive checks, flap detection 
configuration, notifications being sent, and event handlers being called.

The panel at the top and navigation bar on the left-hand side remains the same in all 
the views; however, the central part keeps changing.



Chapter 7

[ 85 ]

The host/service detail
The Host Detail and Service Detail entries are under the Status section in the 
navigation bar.

Service details

Each of these views shows the list of all hosts/services and their status. The default 
view shows only those hosts and services that are in one of the problem states.  
This helps when setting up the monitoring configuration, and need to make sure  
that all hosts and services are in place.

The Hostgroup/Servicegroup Overview/
Summary status
The Hostgroup Overview, Hostgroup Summary, Servicegroup Overview,  
and Servicegroup Summary entries are under the Status section. The overview  
page shows the hosts and services that are grouped by hostgroups/servicegroups, 
while the summary page shows numerical statistics for the same.



Web Interfaces

[ 86 ]

The status map
The status map view is an informative one, it shows the map of the entire network 
using information from the host-parent relationships, and it helps in analyzing the 
point of failure in case of an outage. Following is an example screenshot:

The status map

The preceding figure shows the network map in a graph-like form connecting 
routers/switches and servers. As we can see, the end points in red and yellow  
are in a problem state. They are directly connected to the Icinga process node  
as they don't have a proper host-parent (network device) set in their configurations.

The All Problems view
The All Problem view is a view under the Problems section. It is a clean view that 
shows separate lists of hosts and services in the problem state.



Chapter 7

[ 87 ]

The All Problems view

Other views
The web interface comes with many other views to look into various things, such as 
the comments view that lists all comments and acknowledgements made by users 
on various checks, a downtime view to look at all hosts/services with scheduled 
downtime, and various other views to generate different reports.

Icinga Web
Icinga Web is developed as a separate subproject under the Icinga project  
umbrella. It is not included in the default Icinga package, hence it needs to  
be separately installed.

Requirements
Icinga Web requires a RDBMS backend such as MySQL, PostgreSQL, and Oracle. 
We will restrict ourselves to MySQL. You can refer to official installation guide for 
instructions for the other backends. Make sure you have a working MySQL server 
installation ready for use.



Web Interfaces

[ 88 ]

Install the following dependencies required for Icinga Web:

• Debian/Ubuntu:
sudo apt-get install php5 php5-cli php-pear php5-xmlrpc php5-xsl 
php5-pdo php5-soap php5-gd php5-ldap php5-mysql

• RedHat/CentOS:

sudo yum install php php-cli php-pear php-xmlrpc php-xsl php-pdo 
php-soap php-gd php-ldap php-mysql

Installation
Now we need to install the icinga-idoutils-libdbi-mysql and icinga-web 
packages. There are three ways to install them, follow the one you used for original 
Icinga installation:

• Upstream: We need to install the icinga-idoutils-libdbi-mysql and 
icinga-web packages. They should be available in your distribution 
packages. Similar to the icinga package, Debian (Squeeze/Wheezy),  
and Ubuntu have the upstream packages available on LaunchPad.  
RedHat/CentOS have it available in RepoForge YUM repository (http://
repoforge.org/). Install these packages from the relevant source and  
skip to the Configuration section.

• Build the RPM packages: If you built the icinga package yourself  
(for example, for RedHat/CentOS), the icinga-idoutils-libdbi-mysql 
package is built along with it. Simply install it and continue with building  
the icinga-web RPM package by following these steps:

1. Download the source. The source tarball can be downloaded from 
Icinga's official website from its Downloads section (https://www.
icinga.org/download/packages/). The source includes a SPEC file 
for building RPMs.

2. Build the RPM using the following command:

$ rpmdev-setuptree

$ cp icinga-web.spec ~/rpmbuild/SPECS

$ cp icinga-web-*.tar.gz ~/rpmbuild/SOURCES

$ cd ~/rpmbuild && rpmbuild –bb SPECS/icinga-web.spec

This will create an icinga-web RPM in the ~/rpmbuild/RPMS/
noarch directory. Install it with the rpm –ivh command. Now 
continue with the Configuration section for configuration.



Chapter 7

[ 89 ]

• Compiling from the source: If you installed Icinga from the source,  
you should already have icinga-idoutils-libdbi-mysql installed. 
Compile icinga-web using the following commands:
$ tar zxvf icinga-web-1.9.1.tar.gz

$ cd icinga-web-1.9.1

$ ./configure

$ sudo make install install-apache-config

Refer to the official documentation in case of any problems 
(http://docs.icinga.org/latest/en/icinga-web-
scratch.html#install).

Configuration
In this section, we will see how to configure the Icinga Web. Start MySQL Server 
using the following command:

$ sudo service mysqld start

IDOUtils
Icinga needs access to MySQL database server, and for that we need to initialize a 
new database with a schema provided by Icinga. If you're using a different database 
server than localhost, edit the following script to properly set the database host in 
the DBHOST variable, and run it on the command line:

$ sudo /usr/share/doc/icinga-idoutils-libdbi-mysql-1.9.1/db/scripts/
create_mysqldb.sh

Also, update the database configuration in /etc/icinga/ido2db.cfg in case the 
database is not on localhost. The path may vary depending on the distribution 
and version of the package installed. This script will initialize the database with the 
required schema. Now start the ido2db service:

$ sudo service ido2db start

Icinga Web
Icinga Web uses a separate database than to IDOUtils, hence we need to set up a 
separate MySQL user and database by following these steps:

1. Create a user by using the following commands:
$ mysql -u root -p



Web Interfaces

[ 90 ]

 mysql> GRANT USAGE ON *.* TO 'icinga_web'@'localhost' IDENTIFIED 
BY 'icinga_web';

  GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, ALTER, INDEX 
ON icinga_web.* TO 'icinga_web'@'localhost';

  quit

2. Create a database using the following command:
$ mysql -u root -p

 mysql> CREATE DATABASE icinga_web;

   GRANT USAGE ON *.* TO 'icinga_web'@'localhost' IDENTIFIED BY 
'icinga_web' WITH MAX_QUERIES_PER_HOUR 0 MAX_CONNECTIONS_PER_HOUR 
0 MAX_UPDATES_PER_HOUR 0;

   GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, ALTER, 
INDEX ON icinga_web.* TO 'icinga_web'@'localhost';

   FLUSH PRIVILEGES;

   quit

3. Initialize the database with the required schema as follows:
$ mysql -u root -p icinga_web < /usr/share/doc/icinga-web-1.9.1/
schema/mysql.sql

4. Replace localhost in the preceding commands with the hostname of 
the database server if it is different from the Icinga server. The default 
configuration of Icinga Web connects to MySQL at localhost, if this is not 
the case for your setup, update relevant entries in /usr/share/icinga-web/
app/config/databases.xml.

5. Restart the web server and Icinga:

$ sudo service httpd restart

$ sudo service icinga restart

You can now access the Icinga Web at http://localhost/icinga-web/ with 
username root and password password.

Screenshots
Icinga Web is more or less the same as the Icinga Classic interface in terms of the 
feature set. Let us have a quick look at some of the views, the screenshots have been 
taken from the official Icinga website.



Chapter 7

[ 91 ]

Status view of hosts and services

The top part of the interface is similar to the classic web interface. It shows all the 
host and service statistics by their states. The center view is a little advanced; it has 
tabs for the user to be able to open multiple views as tabs. The list of available views 
is on the center left, represented as icons and categorized into several types. Look at 
the bars at the bottom, each bar represents a category of views.

A tactical overview by hostgroup and servicegroup



Web Interfaces

[ 92 ]

This is similar to the tactical overview view of the classic web interface. It shows  
the number of hosts and services in different states grouped by hostgroups  
and servicegroups.

Host and service statuses in a vertically split tab

This is a very convenient view that is split vertically, with host statuses on left and 
service statuses on right.

Filter entries by various parameters



Chapter 7

[ 93 ]

The status view also has the ability to filter the entries being shown by certain 
parameters in order to be able to see the most relevant data.

External commands can be executed for multiple services

External command actions are available at the main page itself, which can be run for 
multiple service checks at once, without having to open up separate page for each 
service check.

Status map of the network being monitored



Web Interfaces

[ 94 ]

This is similar to the status map in the classic web interface. This shows much the 
same information and some additional statistics on side.

As one can see, all these views can be kept on the interface as tabs, and you can 
navigate around them without having to go away from the page itself. This greatly 
improves the usability.

Thruk
Thruk is a web interface with a mix of AJAX and the classic interface. It also uses  
CGI scripts and has similar views to what we saw earlier. One advantage with 
Thruk, as mentioned earlier, is that it can connect to multiple Icinga cores.

Suppose we have two Icinga monitoring servers that monitor different sets of 
networks for some reason. In this case, we will have two Icinga Classic interfaces  
that we would need to keep checking. Instead, Thruk can connect to both these 
servers and show all of the information in one interface. This happens via the  
MK Livestatus broker module available for Nagios, which can be used with  
Icinga without any change.

Installation and configuration
We need to install livestatus on all the monitoring servers. The package installs a 
livestatus.o object file that needs to be loaded into Icinga. This is achieved with 
the following option in icinga.cfg:

event_broker_options=-1
broker_module=/usr/local/lib/mk-livestatus/livestatus.o /var/lib/
icinga/rw/live

Such a configuration tells Icinga to load the livestatus broker module. This module 
provides a Unix socket file at the specified location (/var/lib/icinga/rw/live 
here). This socket file can be bound to a TCP socket using xinetd and unixcat and 
then served over the network. For example, the xinetd configuration for this is  
as follows:

service livestatus
{
  type          = UNLISTED
  port          = 6557
  socket_type   = stream
  protocol      = tcp



Chapter 7

[ 95 ]

  wait          = no
  cps           = 100 3
  instances     = 500
  per_source    = 250
  flags         = NODELAY
  user          = icinga
  server        = /usr/bin/unixcat
  server_args   = /var/lib/icinga/rw/live
  disable       = no
}

Now, this Unix socket is now accessible at TCP port 6557.

Warning
The xinetd port 6557 mentioned in the preceding code does not 
require any kind of authentication to access the data, so make sure 
you have proper firewall rules in place to restrict access to this port.

A remote Thruk installation can now connect to this TCP port and read the Icinga 
monitoring information it needs to show on the web interface. After installing the 
thruk package, we need to configure the same htpasswd file for authentication. 
The easiest way is to copy Icinga's original htpasswd file (or make a symlink to it) 
in place of Thruk's configured path for the same file that is obtained from Thruk's 
apache configuration /etc/httpd/conf.d/thruk.conf. Another way is to change 
the path to the htpasswd file in this configuration.

Now, we need to configure the backend (peer, in Thruk's terminology) that we want 
to connect to in Thruk. Add the following lines in /etc/thruk/thruk_local.conf 
depending on your Icinga server backends:

<Component Thruk::Backend>
  <peer>
      name   = Icinga 1
      type   = livestatus
      <options>
          peer   = 172.16.0.2:6557
     </options>
  </peer>
  <peer>
      name   = Icinga 2
      type   = livestatus



Web Interfaces

[ 96 ]

      <options>
          peer   = 172.16.0.3:6557
     </options>
  </peer>
</Component>

Thruk will connect to the two configured peers at the specified address and port.

Reloading the web server will load Thruk. Open the address where Thruk is installed 
in a web browser; Thruk is available under the /thruk HTTP path. We should get a 
screen similar to the following:

Thruk

As we can see, Thruk has a similar navigation bar with similar views. The row with 
green cells at the top lists the configured peers. This particular example screenshot 
has five different peers.



Chapter 7

[ 97 ]

Summary
We looked into some of the available web interfaces for Icinga and how each is 
useful for different purposes. The web interfaces provide easy access to the status 
overview of the entire network and server infrastructure, and also manages their 
monitoring to some extent.

With this chapter, we end our overview and insight into Icinga. Icinga evidently is 
a very flexible monitoring system in terms of configuration, plugins, web interface, 
and so on. This flexibility can be leveraged to a great extent to suit a variety of simple 
to complex monitoring requirements. Icinga is a rapidly developing project with 
some very cool features coming up in next releases. Make sure to keep an eye on the 
release announcements at their official website (http://icinga.org).





Index
A
accept_passive_service_checks directive  34
active checks

about  27, 28
private services  30
public services  28, 29

active_checks_enabled directive  27
All Problems view, Icinga Classic  86
altering  61
authentication, Icinga Classic  82

C
check command  16
check_command directive  75
check_disk plugin  43
check_load plugin  42
CheckMEM command  46
CheckSystem modules  46
commands.cfg file  19
configuration, Icinga Web

about  89
IDOUtils  89

configuration options
overview  13

configuration, Thruk  94-96
contact definitions  69
CPU check  45
customization, notification behavior

contact definitions  69
host/service escalation  69-72
service definitions  67, 68

custom plugins
integrating  78
writing  76, 77

D
DEB

using, for Ubuntu  9
default configuration  62-66
disk check  43-47

F
first_notification_delay directive  67

H
host detail, Icinga Classic  85
host escalation  69-72
Hostgroup Overview, Icinga Classic  85
Hostgroup Summary, Icinga Classic  85
HTTP  27

I
Icinga

about  81
compiling, from source  9, 10
installing  7
outcome, of installation process  6
overview  5, 6
requisites  6, 7
URL, for documentation  14

Icinga Classic
about  81
All Problems view  86
authentication  82
host detail  85
Hostgroup Overview  85
Hostgroup Summary  85



[ 100 ]

other views  87
service detail  85
Servicegroup Overview  85
Servicegroup Summary  85
status map  86
Status view  82, 83
tactical view  84

icinga-idoutils-libdbi-mysql package  88
Icinga installers  7
Icinga Web

about  87
configuring  89
installing  88, 89
requisites  87
screenshots  91-94

icinga-web package  88
IDOUtils  89
IMAP  27
installation, Icinga

DEB, using for Ubuntu  9
RPM, building for Red Hat/CentOS  7-9

installation, Icinga Web  88, 89
installation, Thruk  94-96

L
Launchpad  7
linux hostgroup  40
Linux servers

about  40
service checks  41

load check  42
localhost monitoring setup  17, 19

M
memory check  46
MK Livestatus broker module  94
monitoring  61
MonitoringExchange

URL  39

N
Nagios  81
Nagios Exchange

URL  39
nagios-plugins package  39, 75

NagiosQL  6
Nagios Remote Plugin Executor. See  NRPE
NagVis  6
NConf  6
network devices

about  48
network port check  50
packet loss check  49
RTA check  49
SNMP status  50

network port check  50
notification behavior

customizing  66
notification configuration  22, 24
notification_interval directive  67
notification_options directive  67
notification_period directive  68
notifications  22
notifications_enabled directive  67
NRPE  31, 32
NRPE check  44
NSClient++  32

O
object configuration  16
object definition

example  16
Object Identifier (OID)  33
objects

about  15
types  15

P
packet loss check  49
parent-child host relationships  51
passive checks  27, 34-36
passive_checks_enabled directive  27, 34
plugins  75
PNP4Nagios  6
private services

about  30
NRPE  31, 32
NSClient++  32
Secure Shell (SSH)  30
SNMP  33



[ 101 ]

public service
host definition  28
HTTP  28
IMAP  29
SSH  29

public services  28

R
range standards  79
Red Hat/CentOS

RPM, building for  7-9
relationships

declaring, between hosts  51, 52
reload command  29
RepoForge YUM repository  7
restart command  29
RPM

building, for Red Hat/CentOS  7-9
RTA check  49

S
screenshots, Icinga Web  91-94
Secure Shell (SSH)  30
service checks, Linux servers

disk check  43
load check  42
SSH check  41

service checks, Windows servers
CPU check  45
disk check  46, 48
memory check  46
NRPE check  44

service definitions  67, 68
service dependencies  51
service detail, Icinga Classic  85
service escalation  69-72
service group dependencies  59
Servicegroup Overview, Icinga Classic  85
Servicegroup Summary, Icinga Classic  85
service relationships  54-58
Shinken  81
Simlpe Network Management Protocol. See  

SNMP
SMTP relay server setup  10, 11
SNMP  33, 48

SNMP status  50
SSH check  41
status map, Icinga Classic  86
Status view, Icinga Classic  82, 83
switches hostgroup  40

T
tactical view, Icinga Classic  84
templates  20, 21
threshold values  79
Thruk

about  94
configuring  94-96
installing  94-96

U
Ubuntu

DEB, using for  9
use directive  20

W
windows hostgroup  40
Windows servers

about  43
service checks  44





Thank you for buying  
Icinga Network Monitoring

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information 
to anybody from advanced developers to budding web designers. The Open Source brand 
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open 
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Puppet 3 Beginner's Guide 
ISBN: 978-1-78216-124-0             Paperback: 204 pages

Start from scratch with the Puppet configuration 
management system, and learn how to fully utilize 
Puppet through simple, practical examples

1. Shows you step-by-step how to install  
Puppet and start managing your systems  
with simple examples

2. Every aspect of Puppet is explained in detail so 
that you really understand what you're doing

3. Gets you up and running immediately,  
from installation to using Puppet for  
practical tasks in a matter of minutes

Instant Nagios Starter
ISBN: 978-1-78216-250-6            Paperback: 46 pages

An easy guide to getting a Nagios server up and 
running for monitoring, alerting, and reporting 

1. Learn something new in an Instant!  
A short, fast, focused guide delivering 
immediate results

2. Install Nagios with minimal fuss on  
any Unix and Linux platform

3. Harness the flexibility of Nagios for  
intelligent monitoring

Please check www.PacktPub.com for information on our titles



Nagios Core Administration 
Cookbook
ISBN: 978-1-84951-556-6            Paperback: 360 pages

Develop an integrated monitoring solution for 
virtully any kind of network

1. Monitor almost anything in a network

2. Control notifications in your network  
by configuring Nagios Core

3. Get a handle on best practices and  
time-saving configuration methods  
for a leaner configuration

BackTrack: Testing Wireless 
Network Security
ISBN: 978-1-78216-406-7            Paperback: 108 pages

Secure your wireless networks against attacks, hacks, 
and intruders with this step-by-step guide

1. Make your wireless networks bulletproof

2. Easily secure your network from intruders

3. See how the hackers do it and learn how  
to defend yourself

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installation and Configuration
	An overview
	What to expect?
	Requirements
	Download
	Installation
	Building an RPM for Red Hat/CentOS
	Using DEB for Ubuntu
	Compile from the source

	Making it work
	An overview of configuration options
	Summary

	Chapter 2: Icinga Object Configuration
	Objects
	A localhost monitoring setup
	Templates
	Notifications
	Summary

	Chapter 3: Running Remote 
Checks on Systems
	Active checks
	Public services
	Private services
	Secure Shell (SSH)
	Nagios Remote Plugin Executor (NRPE)
	NSClient++
	Simple Network Management Protocol (SNMP)


	Passive checks
	Summary

	Chapter 4: Monitoring Infrastructure, Network Services, 
and System Health
	Linux servers
	The Secure Shell (SSH) check
	The load check
	The disk check

	Windows servers
	The Nagios Remote Plugin Executor 
(NRPE) check
	The CPU check
	The memory check
	The disk check

	Network devices
	Packet loss and RTA check
	The SNMP status
	The network port check

	Parent-child relationships and service dependencies
	Relationships between the hosts
	Service relationships

	Summary

	Chapter 5: Host and Service 
Availability Reporting
	Default configuration
	Customizing the notification behavior
	Service definitions
	Contact definitions
	The host/service escalation

	Summary

	Chapter 6: Icinga Plugins
	Writing custom plugins
	Integrating custom plugins
	Threshold and range standards
	Summary

	Chapter 7: Web Interfaces
	Icinga Classic
	Authentication
	The Status view
	A tactical overview
	The host/service detail
	The Hostgroup/Servicegroup Overview/Summary status
	The status map
	The All Problems view
	Other views

	Icinga Web
	Requirements
	Installation
	Configuration
	IDOUtils
	Icinga Web

	Screenshots

	Thruk
	Installation and configuration

	Summary

	Index



